数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (4): 38-47.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.04.004

doi: 10.11871/jfdc.issn.2096-742X.2023.04.004

• 专刊: “基础研究”联合专刊 • 上一篇    下一篇

有监督学习算法在材料科学中的应用

刘端阳1(),魏钟鸣1,2,*()   

  1. 1.中国科学院半导体研究所,超晶格国家重点实验室, 北京 100083
    2.中国科学院大学,材料科学与光电技术学院, 北京 100049
  • 收稿日期:2023-06-30 出版日期:2023-08-20 发布日期:2023-08-23
  • 通讯作者: *魏钟鸣(E-mail: zmwei@semi.ac.cn
  • 作者简介:刘端阳,中国科学院半导体研究所超晶格国家重点实验室,副研究员,从事半导体材料的第一性原理计算研究,主要研究方向为机器学习在计算物理中的应用。
    本文负责素材收集和论文初稿撰写。
    LIU Duanyang is an associate researcher at the State Key Laboratory of Superlattices in the Institute of Semiconductors, Chinese Academy of Sciences. He is engaged in first-principles calculations of semiconductor materials and his main research focus is on the application of machine learning in computational physics.
    He is responsible for material collection and the initial drafting of research papers.
    E-mail: liudy@semi.ac.cn|魏钟鸣,中国科学院半导体研究所超晶格国家重点实验室,研究员,博士生导师,国家杰出青年科学基金获得者,在国内外知名杂志上发表论文50余篇,合作出版专著1部。授权发明专利12项,其中5项已经完成技术转让。主要研究方向为低维半导体材料与光电器件的实验和理论研究。
    本文负责制定论文框架与稿件修订工作。
    WEI Zhongming is a researcher and doctoral supervisor at the State Key Laboratory of Superlattices in the Institute of Semiconductors, Chinese Academy of Sciences. He is a recipient of the National Science Fund for Distinguished Young Scholars and has published over 50 papers in renowned domestic and international journals.
    He has also co-authored one monograph and holds 12 granted invention patents, with 5 of them already transferred for technology commercialization. His main research focus is on the experimental and theoretical study of low-dimensional semiconductor materials and optoelectronic devices.
    He is responsible for formulating the framework of research papers and revising the manuscripts.
    E-mail: zmwei@semi.ac.cn
  • 基金资助:
    中国科学院网络安全和信息化专项应用示范培育项目“集成电路用单晶硅加工工艺的人工智能辅助软件与平台”(CAS-WX2023PY-0101)

Application of Supervised Learning Algorithms in Materials Science

LIU Duanyang1(),WEI Zhongming1,2,*()   

  1. 1. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-06-30 Online:2023-08-20 Published:2023-08-23

摘要:

【目的】本文希望对近年来机器学习在材料学研究中的应用做一概略的介绍,为相关的研究提供一定的参考。【文献范围】本文主要参考引述了近几年来材料数据库相关文献,以及使用机器学习算法进行材料性能预测、发现新材料的研究论文。【方法】本文介绍了有监督机器学习的处理流程,并介绍了多种有监督机器学习算法在材料科学中的应用现状。【结果】机器学习算法,帮助总结了材料性能与材料的组成元素、晶格结构等的规律,对发现新材料具有重要的意义,而机器学习力场方法则展现出处理复杂的相变、界面等问题的潜力。【局限】鉴于目前掌握的研究水平,主要重点介绍的是有监督机器学习方法在材料性能预测等几个领域的应用,对于无监督学习以及其他材料研究领域的引述尚缺乏。【结论】这是一个新兴的领域,未来将成为材料科学的一个重要组成部分。

关键词: 机器学习, 材料科学, 神经网络, 算法, 性能预测

Abstract:

[Objective] This article aims to provide a brief overview of the applications of machine learning in materials research in recent years, offering a reference for related studies. [Literature Scope] Therefore, this article mainly references recent literature and materials databases and research papers utilizing machine learning algorithms for material property prediction and new material discovery. [Methods] The article introduces the workflow of supervised machine learning and presents the current applications of various supervised machine learning algorithms in materials science. [Results] Machine learning algorithms help to identify patterns between material properties and factors such as composition elements and crystal structures, making them significant in the discovery of new materials. Additionally, force field methods using machine learning demonstrate potential in addressing complex phenomena like phase transitions and interfaces. [Limitations] Due to the limitations of the author’s expertise, the focus of the article is primarily on the application of supervised machine learning methods in material property prediction and a few other areas. Citations regarding to unsupervised learning and other research fields in materials science are currently inadequate. [Conclusions] This is an emerging field that is expected to become an important component of materials science in the future.

Key words: machine learning, materials science, neural networks, algorithms, properties prediction