[1] |
JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL materials, 2013, 1(1): 011002.
doi: 10.1063/1.4812323
|
[2] |
HAASTRUP S, STRANGE M, PANDEY M, et al. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals[J]. 2D Materials, 2018, 5(4): 042002.
doi: 10.1088/2053-1583/aacfc1
|
[3] |
CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: an automatic framework for high-throughput materials discovery[J]. Computational Material Science, 2012, 58: 218-226.
doi: 10.1016/j.commatsci.2012.02.005
|
[4] |
CURTAROLO S, SETYAWAN W, WANG S, et al. AFLO-WLIB. ORG: A distributed materials properties repo-sitory from high-throughput ab initio calculations[J]. Comp-utational Materials Science, 2012, 58: 227-235.
|
[5] |
BLUM L C, REYMOND J L. 970 million druglike small mol-ecules for virtual screening in the chemical universe data-base GDB-13[J]. Journal of the American Chemical Soc-iety, 2009, 131(25): 8732-8733.
|
[6] |
RAMAKRISHNAN R, DRAL P O, RUPP M, et al. Qu-antum chemistry structures and properties of 134 kilo molecules[J]. Scientific data, 2014, 1(1): 1-7.
|
[7] |
TAO Q, LU T, SHENG Y, et al. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting[J]. Journal of Energy Chemistry, 2021, 60: 351-359.
doi: 10.1016/j.jechem.2021.01.035
|
[8] |
XIE T, GROSSMAN J C. Crystal graph convolutional neural networks for an accurate and interpretable predi-ction of material properties[J]. Physical review letters, 2018, 120(14): 145301.
doi: 10.1103/PhysRevLett.120.145301
|
[9] |
X Y, LYU H Y, HAO K R, et al. Large family of two-dimensional ferroelectric metals discovered via machine learning[J]. Science Bulletin, 2021, 66(3): 233-242.
doi: 10.1016/j.scib.2020.09.010
|
[10] |
ZHANG Y, LING C. A strategy to apply machine learn-ing to small datasets in materials science[J]. Npj Compu-tational Materials, 2018, 4(1): 25.
|
[11] |
KHMAISSIA F, FRIGUI H, ANDRIOTIS A N, et al. Data driven modeling of magnetism in dilute magnetic semiconductors: correlation between the magnetic featur-es of diluted magnetic semiconductors and electronic properties of the constituent atoms[J]. Journal of Physics: Condensed Matter, 2019, 31(44): 445901.
doi: 10.1088/1361-648X/ab31d6
|
[12] |
HANSEN K, MONTAVON G, BIEGLER F, et al. Ass-essment and validation of machine learning methods for predicting molecular atomization energies[J]. Journal of Chemical Theory and Computation, 2013, 9(8): 3404-3419.
doi: 10.1021/ct400195d
|
[13] |
HOU Z, TAKAGIWA Y, SHINOHARA Y, et al. Machine-learning-assisted development and theoretical conside-ration for the Al2Fe3Si3 thermoelectric material[J]. ACS applied materials & interfaces, 2019, 11(12): 11545-11554.
|
[14] |
JINNOUCHI R, LAHNSTEINER J, KARSAI F, et al. Phase transitions of hybrid perovskites simulated by machine-lea-rning force fields trained on the fly with Bayesian infere-nce[J]. Physical review letters, 2019, 122(22): 225701.
doi: 10.1103/PhysRevLett.122.225701
|
[15] |
HU L, HUANG B, LIU F. Atomistic Mechanism Unde-rlying the Si (111)-(7×7) Surface Reconstruction Revea-led by Artificial Neural-Network Potential[J]. Physical Review Letters, 2021, 126(17): 176101.
doi: 10.1103/PhysRevLett.126.176101
|
[16] |
ORTES C, VAPNIK V. Support vector network[J]. Mach-ine Learning, 1995, 20: 1-25.
|
[17] |
BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]// Proceedings of the fifth annual workshop on Computational learning theory. 1992: 144-152.
|
[18] |
OLATUNJI S O, OWOLABI T O. Barium titanate semic-onductor band gap characterization through gravitatio-nally optimized support vector regression and extreme learning machine computational methods[J]. Mathema-tical Problems in Engineering, 2021, 2021: 1-12.
|
[19] |
HUANG Y, YU C, CHEN W, et al. Band gap and band align-ment prediction of nitride-based semiconductors using machine learning[J]. Journal of Materials Che-mistry C, 2019, 7(11): 3238-3245.
|
[20] |
SHAMSAH S M I, OWOLABI T O. Newtonian mec-hanics based hybrid machine learning method of charact-erizing energy band gap of doped zno semico-nductor[J]. Chinese Journal of Physics, 2020, 68: 493-506.
doi: 10.1016/j.cjph.2020.10.002
|
[21] |
WESTON L, STAMPFL C. Machine learning the band gap properties of kesterite I2-II-IV-V4 quaternary com-pounds for photovoltaics applications[J]. Physical Rev-iew Materials, 2018, 2(8): 085407.
|
[22] |
TAWFIK S A, ISAYEV O, SPENCER M J S, et al. Pred-icting thermal properties of crystals using machine learn-ing[J]. Advanced Theory and Simulations, 2020, 3 (2): 1900208.
doi: 10.1002/adts.v3.2
|
[23] |
TONG W, WEI Q, YAN H Y, et al. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes[J]. Frontiers of Physics, 2020, 15: 1-7.
|
[24] |
CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based lear-ning methods[M]. Cambridge: Cambridge university press, 2000.
|
[25] |
MILARDOVICH D, JECH M, WALDHOER D, et al. Machine Learning Prediction of Defect Structures in Amorphous Silicon Dioxide[C]// ESSDERC 2021-IEEE 51st European Solid-State Device Research Conference (ESSDERC). IEEE, 2021: 239-242.
|
[26] |
KUMAR U, NAYAK S, CHAKRABARTY S, et al. Gall-ium-Boron-Phosphide (GaBP 2): a new III-V semicon-ductor for photovoltaics[J]. Journal of Materials Science, 2020, 55(22): 9448-9460.
doi: 10.1007/s10853-020-04631-5
|
[27] |
POLAK M P, JACOBS R, MANNODI-KANAKKIT-HODI A, et al. Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets[J]. The Journal of Chemical Physics, 2022, 156(11): 114110.
doi: 10.1063/5.0083877
|
[28] |
ZHANG Y, LING C. A strategy to apply machine lea-rning to small datasets in materials science[J]. Npj Com-putational Materials, 2018, 4(1): 25.
|
[29] |
ATAHAN-EVRENK S, ATALAY F B. Prediction of intramolecular reorganization energy using machine lear-ning[J]. The Journal of Physical Chemistry A, 2019, 123(36): 7855-7863.
doi: 10.1021/acs.jpca.9b02733
|
[30] |
LEDERER J, KAISER W, MATTONi A, et al. Machine learning—based charge transport computation for pentacene[J]. Advanced Theory and Simulations, 2019, 2(2): 1800136.
doi: 10.1002/adts.v2.2
|
[31] |
FABER F A, HUTCHISON L, HUANG B, et al. Pred-iction errors of molecular machine learning models lower than hybrid DFT error[J]. Journal of chemical theory and computation, 2017, 13(11): 5255-5264.
doi: 10.1021/acs.jctc.7b00577
|
[32] |
BREIMAN L. Classification and regression trees[M]. London: Routledge, 2017.
|
[33] |
QUINLAN J R. Induction of decision trees[J]. Machine learning, 1986, 1: 81-106.
|
[34] |
QUINLAN J R. C4. 5: programs for machine learn-ing[M]. Elsevier, 2014.
|
[35] |
HO T K. Random decision forests[C]// Proceedings of 3rd international conference on document analysis and reco-gnition. IEEE, 1995, 1: 278-282.
|
[36] |
ZHANG Y, XU W, LIU G, et al. Bandgap prediction of two-dimensional materials using machine learning[J]. PLOS ONE, 2021, 16(8): e0255637.
doi: 10.1371/journal.pone.0255637
|
[37] |
WANG T, ZHANG K, THÉ J, et al. Accurate prediction of band gap of materials using stacking machine learning model[J]. Computational Materials Science, 2022, 201: 110899.
doi: 10.1016/j.commatsci.2021.110899
|
[38] |
ZHU Z, DONG B, GUO H, et al. Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning[J]. Chinese Physics B, 2020, 29(4): 046101.
doi: 10.1088/1674-1056/ab75d5
|
[39] |
TAWFIK S A, ISAYEV O, STAMPFL C, et al. Efficient prediction of structural and electronic properties of hybrid 2D materials using complementary DFT and machine learning approaches[J]. Advanced Theory and Simulations, 2019, 2(1): 1800128.
doi: 10.1002/adts.v2.1
|
[40] |
YE W, CHEN C, WANG Z, et al. Deep neural networks for accurate predictions of crystal stability[J]. Nature Communications, 2018, 9(1): 3800.
doi: 10.1038/s41467-018-06322-x
pmid: 30228262
|
[41] |
WANG H, ZHANG L, HAN J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184.
doi: 10.1016/j.cpc.2018.03.016
|
[42] |
PIMACHEV A K, Neogi S. First-principles prediction of electronic transport in fabricated semiconductor heter-ostructures via physics-aware machine learning[J]. npj Computational Materials, 2021, 7(1): 93.
doi: 10.1038/s41524-021-00562-0
|
[43] |
PIMACHEV A K, Neogi S. First-principles prediction of electronic transport in fabricated semiconductor heter-ostructures via physics-aware machine learning[J]. npj Computational Materials, 2021, 7(1): 93.
doi: 10.1038/s41524-021-00562-0
|
[44] |
XIE Y, STEARRETT R. Machine Learning based CVD Virtual Metrology in Mass Produced Semiconductor Pro-cess[J]. rXiv preprint arXiv:2107.05071, 2021. https://doi.org/10.48550/arXiv.2107.05071.
doi: https://doi.org/10.48550/arXiv.2107.05071
|
[45] |
ANTONO E, MATSUZAWA N N, LING J, et al. Mac-hine-learning guided quantum chemical and mole-cular dynamics calculations to design novel hole-condu-cting organic materials[J]. The Journal of Physical Chem-istry A, 2020, 124(40): 8330-8340.
|
[46] |
OWOLABI T O, ABD RAHMAN M A. Prediction of band gap energy of doped graphitic carbon nitride using genetic algorithm-based support vector regression and extreme learning machine[J]. Symmetry, 2021, 13(3): 411.
doi: 10.3390/sym13030411
|
[47] |
EL MOURABIT Y, EL HABOUZ Y, ZOUGAGH H, et al. Predictive system of semiconductor failures based on machine learning approach[J]. International journal of advanced computer science and applications (IJACSA), 2020, 11(12): 199-203.
|
[48] |
LIU Z, JIANG M, LUO T. Leverage electron properties to predict phonon properties via transfer learning for semi-conductors[J]. Science advances, 2020, 6(45): eabd1356.
|
[49] |
TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics sim-ulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550.
doi: 10.1039/C8CE00977E
|
[50] |
YU M, MOAYEDPOUR S, YANG S, et al. Dependence of the electronic structure of the EuS/InAs interface on the bonding configuration[J]. Physical Review Materials, 2021, 5(6): 064606.
doi: 10.1103/PhysRevMaterials.5.064606
|
[51] |
HIMANEN L, JÄGER M O J, MOROOKA E V, et al. DS-cribe: Library of descriptors for machine learning in mat-erials science[J]. Computer Physics Communications, 2020, 247: 106949.
doi: 10.1016/j.cpc.2019.106949
|
[52] |
CHMIELA S, SAUCEDA H E, POLTAVSKY I, et al. sGDML: Constructing accurate and data efficient molecular force fields using machine learning[J]. Com-puter Physics Communications, 2019, 240: 38-45.
|