数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (2): 119-135.
CSTR: 32002.14.jfdc.CN10-1649/TP.2023.02.010
doi: 10.11871/jfdc.issn.2096-742X.2023.02.010
收稿日期:
2022-02-17
出版日期:
2023-04-20
发布日期:
2023-04-24
通讯作者:
何洪波
作者简介:
李妍,中国科学院计算机网络信息中心,硕士研究生,主要研究方向为新媒体技术应用、数据挖掘及应用。基金资助:
LI Yan1,2(),HE Hongbo1,*(),WANG Runqiang1
Received:
2022-02-17
Online:
2023-04-20
Published:
2023-04-24
Contact:
HE Hongbo
摘要:
【目的】对现有微博热度预测研究展开多角度调研,讨论现有研究不足,展望未来发展趋势,为后续研究提供参考。【文献范围】本文整理和总结了近5年的国内外相关文献。【方法】本文首先介绍了热度预测问题的定义与热度计算方式,然后将热度预测研究方法从特征、时序和用户行为三个方面深入分析,再对热度预测问题的关键技术展开广泛调研,最后针对存在问题进行总结和展望。【结果】基于特征的热度预测方法因其定制性强被广泛使用,与深度学习和集成学习算法技术结合更是研究主流。【局限】由于各研究数据集未公开,本研究无法用统一的标准对所有算法技术的提升水平做横向对比。【结论】微博热度预测问题对于舆论监控、商业营销和内容推广等都具有一定意义,在社交媒体持续流行的时代,热度预测研究将会被继续深入推进。
李妍,何洪波,王闰强. 微博热度预测研究综述[J]. 数据与计算发展前沿, 2023, 5(2): 119-135.
LI Yan,HE Hongbo,WANG Runqiang. A Survey of Research on Microblog Popularity Prediction[J]. Frontiers of Data and Computing, 2023, 5(2): 119-135, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2023.02.010.
表2
多种特征的有效性对比"
文献编号 | 特征类别 | 关键子特征 | 有效性评估 |
---|---|---|---|
[ | 发博用户特征 | 粉丝数(**)、过往转评赞数(**) | 特征综合>发博用户特征>博文内容特征 |
博文内容特征 | 词频(*)、是否包含图片/视频/长微博(*)、是否包含表情(*) | ||
[ | 发博用户特征 | 粉丝数(***)、关注数(***)、过往点赞数(**)、所属组群数(**) | 特征综合后有效 |
博文内容特征 | 是否包含图片(*) | ||
时间特征 | 发布时间(*) | ||
[ | 发博用户特征 | 粉丝数(***)、发博数(**)、过往转评赞数(*)、关注数(*) | 特征综合>发博用户特征>博文内容特征 |
博文内容特征 | 微博平均长度(***)、情感词数量(**)、标签数(*)、@的用户数(*) | ||
[ | 发博用户特征 | 粉丝数(**)、关注数(**)、发博数(*) | 特征综合>发博用户特征>博文内容特征 |
博文内容特征 | 是否被回复(***) | ||
[ | 发博用户特征 | 粉丝数(**)、关注数(**) | 特征综合>发博用户特征>其他>博文内容特征 |
博文内容特征 | 标签数(***)、概念(***)、标题(**)、子类别(**) | ||
其他 | 图像视觉特征(*) | ||
[ | 发博用户特征 | ID(***)、粉丝数(**)、过往总浏览量(**) | 特征综合>发博用户特征>博文内容特征 |
博文内容特征 | 标签数(***)、概念(***)、图片数(**)、标题长度(**) | ||
[ | 发博用户特征 | 过往平均浏览量(***)、所属组群数(*) | 特征综合>发博用户特征>博文内容特征>时间特征>其他 |
博文内容特征 | 标签数(**)、文本长度(**)、标题长度(**) | ||
时间特征 | 发布时间(*) | ||
其他 | 图像视觉特征(*) |
表3
三种热度预测方法对比"
热度预测方法 | 特点 | 优势 | 劣势 |
---|---|---|---|
基于特征的热度预测方法 | 静态、从博文视角出发、热度多为传播效果进入终态/稳定态时的热度 | (1)研究成果较多,可参考性强; (2)针对性和定制性较强,可覆盖学者期望的所有特征。 | (1)特征模型需要人工构建,耗时耗力,且特征与热度之间的相关性决定了模型的预测效果; (2)静态特征易受到社交网络中突发事件的冲击; (3)预测结果为热度的宏观数值,没有关注微观上个人的行为干预。 |
基于时序的热度预测方法 | 动态、从事件发展视角出发、体现的是传播过程的变化规律 | (1)预测效果和精度普遍较好; (2)可针对未来某一时间节点进行预测,实用性强; (3)用过往观测数据预测未来时刻数据,可解释性较强。 | (1)对于前期时序数据观测记录与整合工作要求较高; (2)观测时间区间本身的局限性会影响预测模型的效果; (3)对于未来时序的预测中,短时效果会优于长时效果。 |
基于用户行为的热度预测方法 | 从传播底层实现视角出发,强调用户之间的交互影响和传播行为 | (1)具有较强的理论基础; (2)考虑用户行为的复杂性、动态性与多样性。 | (1)该方法中如信息级联和传染病模型过于强调“邻居”带来的影响,极易陷入理想的理论模型中,与现实观测效果偏差较大; (2)传播规模较大时,底层行为网络的构建与计算会增大模型开销; (3)以传播范围的形式体现热度水平,应用场景有限。 |
表6
热度预测算法对比"
算法性质 | 文献编号 | 算法模型 | 研究特点 | 研究方法 | 任务类别 | 评价指标 |
---|---|---|---|---|---|---|
传统机器学习 | [56] | LR、SVM | 聚焦特定情感倾向下的热度预测问题 | 特征 | 分类 | ACC、F1 |
[57] | FWM | 引入特征加权机制 | 特征 | 分类 | P、R、F1 | |
深度学习 | [35] | DTCN | 将时间上下文和时间注意力结合 | 时序 | 回归 | MAE、 SRC |
[39] | PreNets | 创新的利用对抗模型寻找特征和时序点过程两种思维模式的平衡 | 特征、时序 | 回归 | MAPE、Kendall | |
[49] | RNe2Vec | 可用于解决潜在用户关系网络未知的信息扩散热度预测问题 | 特征、用户行为 | 分类 | ACC、P、R、F1 | |
[65] | DFTC | 适用于事件传播任何阶段的热度预测 | 特征、时序 | 分类 | ACC、F1 | |
[66] | BiLSTM | 首次实现仅采用标题信息完成热度预测 | 特征 | 分类 | ACC | |
集成学习 | [72] | XGBoost | 实现图片视觉特征、文本内容特征和用户特征的综合 | 特征 | 回归 | MAE、 SRC |
[79] | LDS | 用探测器根据特征性能自动设置集成模型深度 | 特征 | 回归 | MAE、MSE |
[1] | 肖显. 从抗击疫情看政务新媒体传播策略[J]. 青年记者, 2020, 80(30): 62-63. |
[2] | Ji G, Zhu Y, Niu Y, et al. Classification and Evaluation for Microblog Popularity Prediction[C]. Journal of Phy-sics: Conference Series, IOP Publishing, 2021, 1883 (1): 012014. |
[3] | Gao X, Cao Z, Li S, et al. Taxonomy and evaluation for microblog popularity prediction[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2019, 13(2): 1-40. |
[4] |
Nia Z M, Khayyambashi M R. Improving content pop-ularity prediction with k-means clustering and deep-belief networks[J]. Multimedia Tools and Applications, 2021, 80(10): 15745-15764.
doi: 10.1007/s11042-020-10463-x |
[5] | 新浪微博. 热门微博管理规范(试行版)[EB/OL]. [2014-10-17]. https://weibo.com/p/100160-376-671072-4380562. |
[6] |
王晓萌, 方滨兴, 张宏莉, 王星. TSL:基于连接强度的Facebook消息流行度预测模型[J]. 通信学报, 2019, 40(10):1-9.
doi: 10.11959/j.issn.1000-436x.2019207 |
[7] | 胡颖, 胡长军, 傅树深, 黄建一. 流行度演化分析与预测综述[J]. 电子与信息学报, 2017, 39(04):805-816. |
[8] | 郭庆光. 传播学教程(第1版)[M]. 北京: 中国人民大学出版社, 2005: 53. |
[9] | 刘定一, 沈阳阳, 詹天明, 刘亚军, 应毅. 融合微博热点分析和LSTM模型的网络舆情预测方法[J]. 江苏大学学报(自然科学版), 2021, 42(05):546-553. |
[10] | 冯新淇, 张琨, 任奕豪, 谢彬, 赵静. 一种基于RLDA主题模型的特征提取方法[J]. 计算机与数字工程, 2017, 45(10):1980-1985. |
[11] | Gao X, Zheng Z, Chu Q, et al. Popularity prediction for single tweet based on heterogeneous bass model[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(5): 2165-2178. |
[12] | 刘钰. 政务新媒体用户的使用行为分析[D]. 天津大学, 2018. |
[13] | 清博智能. 清博指数榜单公式[EB/OL]. https://www.gsdata.cn/solution/zsmx. |
[14] | Meng Q. Topic popularity prediction of online social network based on single objective evolution[J]. Inter-national Journal of Autonomous and Adaptive Commu-nications Systems, 2020, 13(4): 371-388. |
[15] | 李勇. 基于两层聚类的微博热点话题发现算法研究[J]. 自动化技术与应用, 2021, 40(11):45-50. |
[16] | 陈梦秋, 周安民. 基于SVM的新浪热门微博预测[J]. 现代计算机(专业版), 2017, 34(09):23-27. |
[17] | 郑志蕴, 江国林, 张行进, 王振飞, 李钝. 基于多特征的热门微博预测算法研究[J]. 小型微型计算机系统, 2017, 38(03):494-498. |
[18] | 于海, 吕晴晴, 时鹏, 王铮, 胡长军. 基于在线社交网络事件库多因素耦合的流行度预测方法[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(12):1272-1280. |
[19] | 王新乐, 杨文峰, 廖华明, 王永庆, 刘悦, 俞晓明, 程学旗. 基于多维度特征的主题标签流行度预测[J]. 山东大学学报(理学版), 2020, 55(01):94-101. |
[20] |
Hoang T B N, Mothe J. Predicting information diffusion on Twitter-Analysis of predictive features[J]. Journal of computational science, 2018, 28(1): 257-264.
doi: 10.1016/j.jocs.2017.10.010 |
[21] | Wang K, Bansal M, Frahm J M. Retweet wars: Tweet popularity prediction via dynamic multimodal regression[C]. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018: 1842-1851. |
[22] | Zhu H, Yun X, Han Z. Weibo popularity prediction method based on propagation acceleration[J]. Journal of Computer Research and Development, 2018, 55(6): 1282-1293. |
[23] | He Z, He Z, Wu J, et al. Feature construction for posts and users combined with LightGBM for social media popularity prediction[C]. Proceedings of the 27th ACM International Conference on Multimedia, 2019: 2672-2676. |
[24] | Zhao J, Li J, Sui L, et al. Microblog Popularity Prediction Based on Multimodal Feature Fusion[C]. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), IEEE, 2020: 475-481. |
[25] | Jia K, Zhang X. Micro-blog Retweeting Prediction Based on Combined-Features and Random Forest[C]. CCF Conference on Computer Supported Cooperative Work and Social Computing. Springer, Singapore, 2019: 429-440. |
[26] | Lv J, Liu W, Zhang M, et al. Multi-feature fusion for pre-dicting social media popularity[C]. Proceedings of the 25th ACM international conference on Multimedia, 2017: 1883-1888. |
[27] | Meghawat M, Yadav S, Mahata D, et al. A multimodal approach to predict social media popularity[C]. 2018 IEEE conference on multimedia information processing and retrieval (MIPR), IEEE, 2018: 190-195. |
[28] | Gayberi M, Oguducu S G. Popularity prediction of posts in social networks based on user, post and image features[C]. Proceedings of the 11th International Conference on Management of Digital EcoSystems, 2019: 9-15. |
[29] | Liu T, Zhong Y, Chen K. Interdisciplinary study on popularity prediction of social classified hot online events in China[J]. Telematics and Informatics, 2017, 34(3): 755-764. |
[30] | Luo Y, Wang F, Zhao F, et al. A framework for policy information popularity prediction in new media[C]. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), IEEE, 2019: 209-211. |
[31] | Cerqueira V, Torgo L, Smailović J, et al. A comparative study of performance estimation methods for time series forecasting[C]. 2017 IEEE international conference on data science and advanced analytics (DSAA), IEEE, 2017: 529-538. |
[32] | Chen Xiaoliang, Lan Xiang, Wan Jihong, Lu Peng, Yang Ming, Pancioni Luca. Evolutionary Prediction of Nonst-ationary Event Popularity Dynamics of Weibo Social Network Using Time-Series Characteristics[J]. Discrete Dynamics in Nature and Society, 2021, 2021(1): 1-19. |
[33] |
Xiao C, Liu C, Ma Y, et al. Time sensitivity-based popu-larity prediction for online promotion on Twitter[J]. Information Sciences, 2020, 525(16): 82-92.
doi: 10.1016/j.ins.2020.03.056 |
[34] |
Xiao Y, Xie X, Li Q, et al. Nonlinear dynamics model for social popularity prediction based on multivariate chaotic time series[J]. Physica A: Statistical Mechanics and its Applications, 2019, 525(13): 1259-1275.
doi: 10.1016/j.physa.2019.04.110 |
[35] | Bo Wu, Wen-Huang Cheng, Yongdong Zhang, Qiushi Huang, Jintao Li, and Tao Mei. Sequential prediction of social media popularity with deep temporal context networks[C]. InProceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017, 427(1):3062-3068. |
[36] | Baosong M, Chenguang S. Prediction models for net-work multi-source dissemination of information based on multivariate chaotic time series[C]. 2017 3rd IEEE International Conference on Computer and Communi-cations (ICCC), IEEE, 2017: 767-771. |
[37] | Sermsai R, Laohakiat S. Analysis and Prediction of Temporal Twitter Popularity Using Dynamic Time War-ping[C]. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), IEEE, 2019: 176-180. |
[38] | Song Y, Li A, Quan Y. Topics' popularity prediction based on ARMA model[C]. Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence, 2018: 68-72. |
[39] | Wu Q, Yang C, Zhang H, et al. Adversarial training model unifying feature driven and point process perspectives for event popularity prediction[C]. Proceedings of the 27th ACM International conference on information and knowledge management, 2018: 517-526. |
[40] | 张志扬, 张凤荔, 谭琪, 王瑞锦. 基于深度学习的信息级联预测方法综述[J]. 计算机科学, 2020, 47(07):141-153. |
[41] | Wang H, Li Y, Feng Z, et al. ReTweeting analysis and prediction in microblogs: An epidemic inspired approach[J]. China Communications, 2013, 10(3): 13-24. |
[42] | Cao Q, Shen H, Gao J, et al. Popularity prediction on social platforms with coupled graph neural networks[C]. Proceedings of the 13th International Conference on Web Search and Data Mining, 2020: 70-78. |
[43] | Zhu H, Wang M. A Novel Reposting Prediction Method Based on Quantified Microblog Hotness in Sina Weibo[C]. Proc. International Conference on Computer Science and Application Engineering (Csae), 2017:13-18. |
[44] |
Quan Y, Jia Y, Zhou B, et al. Repost prediction incorp-orating time-sensitive mutual influence in social networks[J]. Journal of Computational Science, 2018, 28(5): 217-227.
doi: 10.1016/j.jocs.2017.11.015 |
[45] |
Li Y, Jin H, Yu X, et al. Intelligent prediction of private information diffusion in social networks[J]. Electronics, 2020, 9(5): 1-16.
doi: 10.3390/electronics9010001 |
[46] |
Xiao Y, Li J, Zhu Y, et al. User Behavior prediction of social hotspots based on multimessage interaction and neural network[J]. IEEE Transactions on Computational Social Systems, 2020, 7(2): 536-545.
doi: 10.1109/TCSS.6570650 |
[47] | Chen F, Tan W H. Marked self-exciting point process modelling of information diffusion on Twitter[J]. The Annals of Applied Statistics, 2018, 12(4): 2175-2196. |
[48] | Ma S, Feng L, Lai C H. Mechanistic modelling of viral spreading on empirical social network and popularity prediction[J]. Scientific reports, 2018, 8(1): 1-10. |
[49] |
Shang J, Huang S, Zhang D, et al. RNe2Vec: information diffusion popularity prediction based on repost network embedding[J]. Computing, 2021, 103(2): 271-289.
doi: 10.1007/s00607-020-00858-x |
[50] |
Aghababaei S, Makrehchi M. Activity-based Twitter sampling for content-based and user-centric prediction models[J]. Human-centric Computing and Information Sciences, 2017, 7(1): 1-20.
doi: 10.1186/s13673-016-0083-0 |
[51] |
Han Z, Tang Z, He B. Improved Bass model for pre-dicting the popularity of product information posted on microblogs[J]. Technological Forecasting and Social Change, 2022, 176(3): 121458.
doi: 10.1016/j.techfore.2021.121458 |
[52] | Cao Q, Shen H, Gao H, et al. Predicting the popularity of online content with group-specific models[C]. Proc-eedings of the 26th International Conference on World Wide Web Companion, 2017: 765-766. |
[53] |
Bao Z, Liu Y, Zhang Z, et al. Predicting popularity via a generative model with adaptive peeking window[J]. Physica A: Statistical Mechanics and its Applications, 2019, 522(10): 54-68.
doi: 10.1016/j.physa.2019.01.132 |
[54] |
Tan W H, Chen F. Predicting the popularity of tweets using internal and external knowledge: an empirical Bayes type approach[J]. AStA Advances in Statistical Analysis, 2021, 105(2): 335-352.
doi: 10.1007/s10182-021-00390-z |
[55] |
Zhang H. Research on information popularity prediction of multimedia network based on fast K proximity alg-orithm[J]. International Journal of Autonomous and Adaptive Communications Systems, 2020, 13(2): 103-115.
doi: 10.1504/IJAACS.2020.109808 |
[56] | Klubička F, Fernandez R. Examining a hate speech corpus for hate speech detection and popularity predi-ction[J]. arXiv preprint arXiv:1805.04661, 2018. |
[57] | Zhang Y, Xu Z, Yang Q. Predicting popularity of mess-ages in twitter using a feature-weighted model[J]. . |
[58] | Kristiyanti D A, Umam A H. Prediction of Indonesia presidential election results for the 2019-2024 period using twitter sentiment analysis[C]. 2019 5th Internat-ional Conference on New Media Studies (CONMEDIA), IEEE, 2019: 36-42. |
[59] | Chen J, Sun B, Li H, et al. Deep ctr prediction in display advertising[C]. Proceedings of the 24th ACM intern-ational conference on Multimedia, 2016: 811-820. |
[60] | 武维, 李泽平, 杨华蔚, 林川, 王忠德. 融合内容特征和时序信息的深度注意力视频流行度预测模型[J]. 计算机应用, 2021, 41(07):1878-1884. |
[61] | Li C, Ma J, Guo X, et al. Deepcas: An end-to-end pred-ictor of information cascades[C]. Proceedings of the 26th international conference on World Wide Web, 2017: 577-586. |
[62] | Chen G, Kong Q, Xu N, et al. NPP: A neural popularity prediction model for social media content[J]. Neurocom-puting, 2019, 333(11): 221-230. |
[63] |
Yu H, Hu Y, Shi P. A prediction method of peak time popularity based on twitter hashtags[J]. IEEE Access, 2020, 8(1): 61453-61461.
doi: 10.1109/Access.6287639 |
[64] | Zhang Y, Jatowt A. Image tweet popularity prediction with convolutional neural network[C]. European Confer-ence on Information Retrieval, Springer, Cham, 2019: 803-809. |
[65] | Liao D, Xu J, Li G, et al. Popularity prediction on online articles with deep fusion of temporal process and content features[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 200-207. |
[66] | Stokowiec W, Trzciński T, Wołk K, et al. Shallow reading with deep learning: Predicting popularity of online content using only its title[C]. International Symposium on Me-thodologies for Intelligent Systems, Springer, Cham, 2017: 136-145. |
[67] |
Liu Y, Zhao J, Xiao Y. C-RBFNN: A user retweet beh-avior prediction method for hotspot topics based on im-proved RBF neural network[J]. Neurocomputing, 2018, 275(5): 733-746.
doi: 10.1016/j.neucom.2017.09.015 |
[68] | Zhang Z, Chen T, Zhou Z, et al. How to become instag-ram famous: Post popularity prediction with dualatte-ntion[C]. 2018 IEEE international conference on big data (big data), IEEE, 2018: 2383-2392. |
[69] | 李国成, 陆俊, 王赟, 黄瑞, 刘谋海. 基于Bagging二次加权集成的孤立森林窃电检测算法[J]. 电力系统自动化, 2022, 46(02):92-100. |
[70] |
Leo Breiman. Random Forests[J]. Machine Learning, 2001, 45(1) : 5-32.
doi: 10.1023/A:1010933404324 |
[71] | Chen T Q, Guestrin C. XGBoost: a scalable tree boos-ting system[C]. Proceedings of the ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, 2016: 785-794. |
[72] | Qiu X, Zuo Y, Liu G. ETCF: An ensemble model for CTR prediction[C]. 2018 15th International Conference on Service Systems and Service Management (ICSSSM), IEEE, 2018: 1-5. |
[73] | Chen J, Liang D, Zhu Z, et al. Social media popularity prediction based on visual-textual features with XGB-oost[C]. Proceedings of the 27th ACM International Conference on Multimedia, 2019: 2692-2696. |
[74] | Tang J, Xu X, Qiu J. Model Construction and Evaluation of Microblog News Popularity Prediction[C]. 2021 7th Annual International Conference on Network and Infor-mation Systems for Computers (ICNISC), IEEE, 2021: 457-464. |
[75] | Wang J, Lou C, Yu R, et al. Research on hot micro-blog forecast based on XGBOOST and random forest[C]. International Conference on Knowledge Science, Engine-ering and Management, Springer, Cham, 2018: 350-360. |
[76] |
Carta S, Podda A S, Recupero D R, et al. Popularity pred-iction of instagram posts[J]. Information, 2020, 11(9): 453-453.
doi: 10.3390/info11090453 |
[77] | Kang P, Lin Z, Teng S, et al. Catboost-based framework with additional user information for social media popu-larity prediction[C]. Proceedings of the 27th ACM interna-tional conference on multimedia, 2019: 2677-2681. |
[78] | Deshpande D. Prediction & evaluation of online news popularity using machine intelligence[C]. 2017 Intern-ational Conference on Computing, Communication, Con-trol and Automation (ICCUBEA), IEEE, 2017: 1-6. |
[79] |
Lin Z, Huang F, Li Y, et al. A layer-wise deep stacking model for social image popularity prediction[J]. World Wide Web, 2019, 22(4): 1639-1655.
doi: 10.1007/s11280-018-0590-1 |
[80] | 朱海龙, 云晓春, 韩志帅. 基于传播加速度的微博流行度预测方法[J]. 计算机研究与发展, 2018, 55(06):1282-1293. |
[81] | Cao Q, Shen H, Cen K, et al. DeepHawkes: Bridging the gap between prediction and understanding of information cascades[C]. Proceedings of the 26th ACM International Conference on Information and Know-ledge Management, USA:ACM, 2017:1149-1158. |
[82] | 包恒彬, 马玉鹏, 杨奉毅, 韩云飞. 基于时空注意力机制的加油站级客流量预测[J]. 计算机工程, 2021, 47(04):291-297. |
[83] | 王萧萧, 王亭雯, 马玉玲, 范佳奕, 崔超然. 基于深度森林的P2P网贷借款人信用风险评估方法[J]. 计算机科学, 2021, 48(S2):429-434. |
[84] | 周志华. 机器学习(第1版)[M]. 北京: 清华大学出版社, 2016: 28-32. |
[1] | 刘云帆,李琦,孙哲南,谭铁牛. 基于生成对抗网络的人脸年龄编辑方法综述[J]. 数据与计算发展前沿, 2023, 5(2): 2-23. |
[2] | 涂又友,郑奇靖,赵瑾. 基于深度学习方法研究分子/固体界面量子化质子耦合的电荷转移过程[J]. 数据与计算发展前沿, 2023, 5(2): 37-49. |
[3] | 高添,朱教君,张金鑫,孙一荣,于丰源,滕德雄,卢德亮,于立忠,王宗国. 基于新一代信息技术的温带森林生态系统碳通量精准计量[J]. 数据与计算发展前沿, 2023, 5(2): 60-72. |
[4] | 王凡,冯立强,曹荣强. 大数据驱动的海洋人工智能服务平台设计与应用[J]. 数据与计算发展前沿, 2023, 5(2): 73-85. |
[5] | 许淞源,刘峰. ESDRec:一种面向地球大数据平台的数据推荐模型[J]. 数据与计算发展前沿, 2023, 5(1): 55-64. |
[6] | 赵忠斌,蔡满春,芦天亮. 融合多头注意力机制的网络恶意流量检测[J]. 数据与计算发展前沿, 2022, 4(5): 60-67. |
[7] | 危婷,张宏海,蔺小丽,张蕾蕾,王妍,贾金峰. 云服务网站用户复访行为预测模型研究[J]. 数据与计算发展前沿, 2022, 4(3): 124-130. |
[8] | 孙永谦,张茹茹,林子涵,张圣林,谭智元,张玉志. KPI异常检测方法评估[J]. 数据与计算发展前沿, 2022, 4(3): 46-65. |
[9] | 陈琼,杨咏,黄天林,冯媛. 小样本图像语义分割综述[J]. 数据与计算发展前沿, 2021, 3(6): 17-34. |
[10] | 蒲晓蓉,黄佳欣,刘军池,孙家瑜,罗纪翔,赵越,陈柯成,任亚洲. 面向临床需求的CT图像降噪综述[J]. 数据与计算发展前沿, 2021, 3(6): 35-49. |
[11] | 何涛,王桂芳,马廷灿. 基于词嵌入语义异常的跨学科研究内容发现方法[J]. 数据与计算发展前沿, 2021, 3(6): 50-59. |
[12] | 张怡宁,何洪波,王闰强. 热门数字音频预测技术综述[J]. 数据与计算发展前沿, 2021, 3(4): 81-92. |
[13] | 蒲剑苏,朱正国,邵慧,高博洋,朱焱麟,闫宗楷,向勇. 基于可视化的固态电解质材料机器学习筛选与预测[J]. 数据与计算发展前沿, 2021, 3(4): 18-29. |
[14] | 张舒莹,韩鑫胤,何小雨,袁丹阳,栾海晶,李瑞琳,何佳茵,牛北方. 基于机器学习的基因组微卫星状态探测方法综述[J]. 数据与计算发展前沿, 2021, 3(3): 126-135. |
[15] | 陈子健,李俊,岳兆娟,赵泽方. 基于自编码器与属性信息的混合推荐模型[J]. 数据与计算发展前沿, 2021, 3(3): 148-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||