数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (2): 119-135.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.02.010

doi: 10.11871/jfdc.issn.2096-742X.2023.02.010

• 技术与应用 • 上一篇    下一篇

微博热度预测研究综述

李妍1,2(),何洪波1,*(),王闰强1   

  1. 1.中国科学院计算机网络信息中心,北京100083
    2.中国科学院大学,北京100049
  • 收稿日期:2022-02-17 出版日期:2023-04-20 发布日期:2023-04-24
  • 通讯作者: 何洪波
  • 作者简介:李妍,中国科学院计算机网络信息中心,硕士研究生,主要研究方向为新媒体技术应用、数据挖掘及应用。
    本文中负责文献调研、文献分析、归纳总结与论文写作等。
    LI Yan is a graduate student in the Compu-ter Network Information Center of Chinese Academy of Sciences. Her main research fields include the app-lication of new media technology, data mining, and applica-tion.
    In this paper, she is responsible for literature research, literature analysis, summary, and thesis writing.
    E-mail: yanli@cnic.cn|何洪波,中国科学院计算机网络信息中心,高级工程师,硕士生导师,主要研究方向为新媒体技术应用、互联网数据挖掘和信息推荐。
    本文中负责写作指导、论文修订和总体统稿等。
    HE Hongbo is a senior engineer and ma-ster tutor at the Computer Network Information Center of Chinese Academy of Sciences. His research fields include the application of new media technology, Internet data mining, and information recommendation.
    In this paper, he is responsible for writing guidance, paper revision, and the final compilation.
    E-mail: hhb@cnic.cn
  • 基金资助:
    中国科学院“十四五”网络安全和信息化专项子课题“网络空间科普云矩阵建设与应用”

A Survey of Research on Microblog Popularity Prediction

LI Yan1,2(),HE Hongbo1,*(),WANG Runqiang1   

  1. 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-02-17 Online:2023-04-20 Published:2023-04-24
  • Contact: HE Hongbo

摘要:

【目的】对现有微博热度预测研究展开多角度调研,讨论现有研究不足,展望未来发展趋势,为后续研究提供参考。【文献范围】本文整理和总结了近5年的国内外相关文献。【方法】本文首先介绍了热度预测问题的定义与热度计算方式,然后将热度预测研究方法从特征、时序和用户行为三个方面深入分析,再对热度预测问题的关键技术展开广泛调研,最后针对存在问题进行总结和展望。【结果】基于特征的热度预测方法因其定制性强被广泛使用,与深度学习和集成学习算法技术结合更是研究主流。【局限】由于各研究数据集未公开,本研究无法用统一的标准对所有算法技术的提升水平做横向对比。【结论】微博热度预测问题对于舆论监控、商业营销和内容推广等都具有一定意义,在社交媒体持续流行的时代,热度预测研究将会被继续深入推进。

关键词: 热度预测, 微博, 机器学习, 深度学习

Abstract:

[Objective] This paper is to conduct a multi-angle survey of the existing research on microblog popularity prediction, discuss the shortcomings of the existing approaches, foresee the future development trend, and provide a reference for follow-on researches. [Coverage] The paper sorts out and summarizes relevant literatures both in China and abroad in recent five years. [Methods] The paper first introduces the definition of popularity prediction and popularity calculation methods. Then the research methods of popularity prediction are analyzed from three aspects: characteristics, time sequence, and user behavior. An extensive study is conducted on the key technologies of popularity prediction. Finally, the problems of the existing methods and the prospect are summarized. [Results] Feature-based popularity prediction methods are widely used because of they are well customized. The method combining deep learning and ensemble learning is becoming the mainstream approach. [Limitations] As the dataset of the individual research is not publicly available, this study cannot make a horizontal comparison of all algorithms for the level of improvement against a unified standard. [Conclusions] Microblog popularity prediction is significant for public opinion monitoring, commercial marketing, and content promotion, etc. In the era of ever-increasing popularity of social media, the research on popularity prediction will be further promoted.

Key words: popularity prediction, microblog, machine learning, deep learning