[1] |
Sedhain S, Menon A K, Sanner S, et al. Autorec: Autoen-coders meet collaborative filtering[C]. Proceedings of the 24th international conference on World Wide Web, 2015: 111-112.
|
[2] |
Zhang S, Yao L, Sun A, et al. Deep learning based recommender system: A survey and new perspectives[J]. ACM Computing Surveys (CSUR), 2019, 52(1):1-38.
|
[3] |
周洋, 陈家琪. 基于栈式降噪自编码器的协同过滤算法[J]. 计算机应用研究, 2017, 34(08):2336-2339.
|
[4] |
黄立威, 江碧涛, 吕守业, 刘艳博, 李德毅. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(07):1619-1647.
|
[5] |
Shan Y, Hoens T R, Jiao J, et al. Deep crossing: Web-scale modeling without manually crafted combinatorial features[C]. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016: 255-262.
|
[6] |
Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]. Proceedings of the 1st workshop on deep learning for recommender systems, 2016: 7-10.
|
[7] |
Zhang F, Yuan N J, Lian D, et al. Collaborative knowledge base embedding for recommender systems[C]. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016: 353-362.
|
[8] |
王倩雯, 张延华, 付琼霄, 李萌, 李庆. 基于双重注意力机制的降噪自编码器推荐算法[J]. 高技术通讯, 2020, 30(12):1234-1242.
|
[9] |
刘晓东, 倪浩然. 深度学习技术在学科融合研究中的应用[J]. 数据与计算发展前沿, 2020, 2(5):99-109.
|
[10] |
Kim Y. Convolutional neural networks for sentence classification[C]. Empirical Methods in Natural Language Processing, 2014:1746-1751.
|
[11] |
陈涛, 安俊秀. 基于特征融合的微博短文本情感分类研究[J]. 数据与计算发展前沿, 2020, 2(6):21-29.
|
[12] |
Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8):30-37.
|
[13] |
Mnih A, Salakhutdinov R R. Probabilistic matrix factori-zation[J]. Advances in neural information processing systems, 2007, 20:1257-1264.
|
[14] |
Luo X, Zhou M, Xia Y, et al. An Efficient Non-Nega-tive Matrix-Factorization-Based Approach to collaborative Filtering for Recommender Systems[J]. IEEE Transac-tions on Industrial Informatics, 2014, 10(2):1273-1284.
|