[1] |
于东方, 殷建平, 张国敏. 一种基于灰度直方图的遥感影像阴影自动检测方法[J]. 计算机工程与科学, 2008,30(12):43-44+93.
|
[2] |
陈波, 张友静, 陈亮. 标记分水岭算法及区域合并的遥感图像分割[J]. 国土资源遥感, 2007(02):35-38.
|
[3] |
刘永学, 李满春, 毛亮. 基于边缘的多光谱遥感图像分割方法[J]. 遥感学报, 2006(03):350-356.
|
[4] |
郑玮, 康戈文, 陈武凡, 李小文. 基于模糊马尔可夫随机场的无监督遥感图像分割算法[J]. 遥感学报, 2008(02):246-252.
|
[5] |
王民, 张鑫, 贠卫国, 卫铭斐, 王静. 基于核模糊C-均值和EM混合聚类算法的遥感图像分割[J]. 液晶与显示, 2017,32(12):999-1005.
|
[6] |
李树深. 数据与计算是科技创新的巨大驱动力[J]. 数据与计算发展前沿, 2019,1(1):1-1.
|
[7] |
廖方宇, 洪学海, 汪洋, 褚大伟. 数据与计算平台是驱动当代科学研究发展的重要基础设施[J]. 数据与计算发展前沿, 2019,1(1):2-10.
|
[8] |
Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks[J]. Neural Information Processing Systems, 2012: 1097-1105.
|
[9] |
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition[C]. In ICLR, 2015: 1-14.
|
[10] |
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition[C]. In CVP, 2016: 770-778.
|
[11] |
孙哲南, 张兆翔, 王威, 刘菲, 谭铁牛. 2019 年人工智能新态势与新进展[J]. 数据与计算发展前沿, 2019,1(2):1-16.
|
[12] |
Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017 Apr;39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
|
[13] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234-241.
|
[14] |
Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsing Network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 6230-6239.
|
[15] |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]// European Conference on Computer Vision. Springer, Cham, 2018: 833-851.
|
[16] |
Chen LC, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[C]// arXiv preprint arXiv:1412.7062, 2014.
|
[17] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
|
[18] |
Berman M, Triki A R, Blaschko MB. The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018: 4413-4421.
|
[19] |
Sun K, Xiao B, Liu D, et al. Deep HighResolution Re-presentation Learning for Human Pose Estimation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 5693-5703.
|