[1] |
Bergstra J, Breuleux O, Bastien F, et al. Theano: a CPU and GPU math expression compiler [C]. Proceedings of the Python for scientific computing conference (SciPy). 2010,4(3).
|
[2] |
Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding [C]. Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014: 675-678.
|
[3] |
Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-scale machine learning [C]. 12th {USENIX} Symposium on Operating Systems Design and Implementation({OSDI} 16). 2016: 265-283.
|
[4] |
Paszke A, Gross S, Chintala S , et al. Pytorch: Tensors and dynamic neural networks in python with strong gpu acceleration[J]. PyTorch: Tensors and dynamic neural networks in Python with strong GPU acceleration, 2017,6.
|
[5] |
飞桨:源于产业实践的开源深度学习平台[EB/OL]. https://www.paddlepaddle.org.cn/.
|
[6] |
Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu . Ernie: Enhanced representation through knowledge integration. arXiv:1904.09223, 2019.
|
[7] |
Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova . Bert: Pre-training of deep bidirectional transformers for language understanding . arXiv preprint arXiv:1810.04805, 2018.
|
[8] |
Mnih V, Kavukcuoglu K, Silver D , et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540):529.
|
[9] |
Lillicrap T P, Hunt J J, Pritzel A , et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv:1509.02971, 2015.
|
[10] |
Schulman J, Wolski F, Dhariwal P , et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.
|
[11] |
Espeholt L, Soyer H, Munos R , et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures[J]. arXiv preprint arXiv:1802.01561, 2018.
|
[12] |
Babaeizadeh M, Frosio I, Tyree S , et al. GA3C: GPU-based A3C for deep reinforcement learning[J]. CoRR abs/1611.06256, 2016.
|
[13] |
OpenAI Baselines: ACKTR & A2C[EB/OL] https://openai.com/blog/baselines-acktr-a2c/.
|
[14] |
XBYAK - X86, X64 JIT ASSEMBLER[EB/OL] http://herumi.in.coocan.jp/soft/xbyak_e.html.
|
[15] |
OpenBLAS: An optimized BLAS library[EB/OL] https://www.openblas.net/.
|
[16] |
Intel(R) Math Kernel Librray (Intel(R) MKL) [EB/OL] https://software.intel.com/en-us/mkl.
|
[17] |
Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) [EB/OL] https://github.com/intel/mkl-dnn.
|
[18] |
nGraph Compiler stack (Beta) [EB/OL] https://github.com/NervanaSystems/ngraph.
|
[19] |
NVIDIA cuBLAS, Dense Library Algebra on GPUs[EB/OL] https://developer.nvidia.com/cublas.
|
[20] |
NVIDIA CUDA(R) Deep Neural Network library (cuDNN)[ EB/OL] https://developer.nvidia.com/cudnn.
|
[21] |
Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, Haifeng Wang . ERNIE 2.0: A Continual Pre-training Framework for Language Understanding. arXiv preprint arXiv:1907.12412v1, 2019.
|
[22] |
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V . Le. XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv preprint arXiv:1906.08237, 2019.
|