数据与计算发展前沿 ›› 2021, Vol. 3 ›› Issue (6): 35-49.
doi: 10.11871/jfdc.10-1649.2021.06.003
蒲晓蓉1,*(),黄佳欣1(),刘军池1(),孙家瑜2(),罗纪翔1(),赵越1(),陈柯成1(),任亚洲1()
收稿日期:
2021-11-15
出版日期:
2021-12-20
发布日期:
2022-01-26
通讯作者:
蒲晓蓉
作者简介:
蒲晓蓉, 电子科技大学计算机科学与工程学院,博士,教授,主要研究方向包括人工神经网络、机器学习、计算机视觉、医学图像处理、计算机辅助诊断 (CAD)、智能健康医疗。基金资助:
PU Xiaorong1,*(),HUANG Jiaxin1(),LIU Junchi1(),SUN Jiayu2(),LUO Jixiang1(),ZHAO Yue1(),CHEN Kecheng1(),REN Yazhou1()
Received:
2021-11-15
Online:
2021-12-20
Published:
2022-01-26
Contact:
PU Xiaorong
摘要:
【目的】低剂量CT扫描技术已广泛用于肺结节和肺癌早期筛查等临床诊断。然而,由辐射剂量降低所导致的成像噪声制约着诊断精度的进一步提高。【方法】本文综合研究了低剂量CT图像降噪技术的发展脉络,从基于迭代优化等传统方法出发,分析了当前基于机器学习技术的低剂量CT图像降噪等CT图像降噪方法。【结果】现有基于机器学习的CT图像降噪方法,一方面采用人为假设噪声分布并构造人工数据集进行模型训练和测试,忽略了临床应用中噪声特点和强度的多样性问题;另一方面,由于深度神经网络的“黑盒”特性,导致现有基于深度神经网络的低剂量CT图像降噪模型的可解释性不足。【结论】CT图像降噪应面向临床实际需求,充分考虑噪声形成的机理和图像噪声的真实分布,结合病灶检测等高阶任务和临床医生的阅片行为,探索面向临床需求的低剂量CT图像降噪新范式。
蒲晓蓉,黄佳欣,刘军池,孙家瑜,罗纪翔,赵越,陈柯成,任亚洲. 面向临床需求的CT图像降噪综述[J]. 数据与计算发展前沿, 2021, 3(6): 35-49.
PU Xiaorong,HUANG Jiaxin,LIU Junchi,SUN Jiayu,LUO Jixiang,ZHAO Yue,CHEN Kecheng,REN Yazhou. A Survey on Clinical Oriented CT Image Denoising[J]. Frontiers of Data and Computing, 2021, 3(6): 35-49.
表1
2018-2021年基于CNN的LDCT图像降噪主流方法(表中PSNR为峰值信噪比,SSIM为结构相似度,RMSE为均方根误差,三者均为常用的CT图像评价指标)。"
参考文献 | 噪声类型 | 应用场景 | 关键词 | 评价指标 |
---|---|---|---|---|
Gholizadeh等 (2018) [ | 外加白噪声 | LDCT/X射线图像降噪 | 膨胀卷积 | PSNR\SSIM |
Kadimesetty等 (2019) [ | 外加白噪声 | LDCT图像降噪 | 强化学习/批归一化 | PSNR\SSIM |
Liu等 (2018) [ | 外加白噪声 | CT灌注图像降噪 | 遗传算法 | PSNR\SSIM\RMSE |
Han等(2018) [ | 真实噪声 | CT图像重建 | U-Net/跳跃连接 | PSNR\SSIM |
Khoroushadi等(2019) [ | 真实噪声 | LDCT图像降噪 | 小波变换 | PSNR\SSIM |
Green等(2018) [ | 真实噪声 | 肺部超低剂量CT图像降噪 | 卷积神经网络 | PSNR\双盲评分 |
Li等(2020) [ | 真实噪声 | LDCT图像降噪 | 自注意力/自监督 | PSNR\SSIM\RMSE |
Hendriksen等(2020) [ | 真实噪声 | LDCT图像降噪 | 自监督/无配对样本 | PSNR\SSIM\RMSE |
Wu等(2020)[ | 真实噪声 | CT灌注图像降噪 | 自监督/无配对样本 | PSNR\SSIM |
Du等(2020)[ | 真实噪声 | 图像超分/LDCT图像降噪 | 无监督/域适应 | PSNR\SSIM\RMSE |
Chen等(2021)[ | 真实噪声 | LDCT图像降噪 | 协同训练 | PSNR\双盲评分 |
Chen等(2020)[ | 真实噪声 | LDCT图像降噪 | 构造成对伪样本 | PSNR\SSIM |
表2
2018-2021年基于GAN的LDCT图像降噪主流方法"
参考文献 | 噪声类型 | 应用场景 | 关键词 | 评价指标 |
---|---|---|---|---|
Yu等 (2018) [ | 外加白噪声 | 光学相干层析成像降噪 | 深度网络/跳跃连接 | PSNR\SSIM\RMSE |
Abbasi等(2019) [ | 外加白噪声 | 3D-MRI/LDCT图像降噪 | 强化学习/全卷积网络 | PSNR\SSIM |
Ma等(2018) [ | 真实噪声 | 光学相干层析成像降噪 | GAN/边缘优先 | PSNR\SSIM\RMSE |
Hong等(2020) [ | 真实噪声 | CT图像重建 | CGAN/端到端网络 | PSNR\SSIM |
Park等(2019) [ | 真实噪声 | LDCT图像降噪 | GAN/无监督 | PSNR\SSIM\RMSE |
You等(2018) [ | 真实噪声 | LDCT图像降噪 | GAN/无监督 | PSNR\双盲评分 |
Yang等(2018) [ | 真实噪声 | LDCT图像降噪 | WGAN/感知损失 | PSNR\双盲评分 |
Zhang等(2021) [ | 真实噪声 | LDCT图像降噪 | U-Net | PSNR\SSIM\RMSE |
[1] | Pan T. Computed Tomography: from Photon Statistics to Modern Cone-Beam CT[J]. Journal of Nuclear Medicine, 2009,50(7):1194. |
[2] | 张秀文, 张永寿, 刘乃智. PET-CT工作原理及应用[J]. 中国医学装备, 2012, ( 11):22-25. |
[3] | 石明国. 实用CT影像技术学[M]. 西安: 陕西科学技术出版社, 1995: 233-235. |
[4] | 朱兆丰. CT图像中噪声产生机理与维修[J]. 中国医疗设备, 2005,20(11):50-51. |
[5] | Naidich D P, Marshall C H, Gribbin C, et al. Low-dose CT of the lungs: Preliminary observations[J]. Radiology, 1990,175(3):729-731. |
[6] | 吴宁, 赵世俊. 积极规范地开展低剂量螺旋CT肺癌筛查[J]. 中华放射学杂志, 2015(5):2. |
[7] | Guo L, Chen Q, Shen Y, et al. Evaluation of a Low-Dose Computed Tomography Lung Cancer Screening Program in Henan, China[J]. JAMA Network Open, 2020,3(11):e2019039. |
[8] | Shi J, Wang L, Wang S, Chen Y, et al. 2020. Applications of deep learning in medical imaging: a survey. Journal of Image and Graphics, 25(10):1953-1981. |
[9] | Wang J, Lu H, Li T, et al. Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters[C]. Image Processing pt.3, Progress in Biomedical Optics and Imaging, 2005,6(24):2058-2066. |
[10] | Mileto A, Guimaraes L, Mccollough C, et al. State of the Art in Abdominal CT: The Limits of Iterative Recons-truction Algorithms[J]. Radiology, 2019,293(3):491-503. |
[11] | Li M, Hsu W, Xie X, et al. SACNN: Self-Attention Con-volutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network[J]. IEEE Transactions on Medical Imaging, 2020,39(7):2289-2301. |
[12] | Hara A, Paden R, AC Silva, et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasi-bility study[J]. American Journal of Roentgenology, 2009,193(3):764-771. |
[13] | Sidky E, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Bio-logy, 2008,53(17):4777-4807. |
[14] | Yang C, Gao D, Cong N, et al. Bayesian statistical recon-struction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior[J]. Computerized Medical Imaging & Graphics, 2009,33(7):495-500. |
[15] | Xu Q, Yu H, Mou X, et al. Low-dose X-ray CT reconstr-uction via dictionary learning[J]. IEEE transactions on medical imaging, 2012,31(9):1682-1697. |
[16] | Cai J, Jia X, Gao H, et al. Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study[J]. IEEE transactions on medical imaging, 2014,33(8):1581-1591. |
[17] | Li Z, Yu L, Trzasko J D, et al. Adaptive nonlocal means filtering based on local noise level for CT denoising[J]. Medical physics, 2014,41(1):11908. |
[18] | Feruglio P, Vinegoni C, Gros J, et al. Block matching 3D random noise filtering for absorption optical projection tomography[J]. Physics in Medicine & Biology, 2010,55(18):5401-5415. |
[19] | Chen H, Zhang Y, Zhang W, et al. Low-dose CT den-oising with convolutional neural network[C]. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017: 143-146. |
[20] | Chen H, Zhang Y, Kalra M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE transactions on medical imaging, 2017,36(12):2524-2535. |
[21] | Mao X, Shen C, Yang Y. Image restoration using very deep convolutional encoder-decoder networks with sym-metric skip connections[C]. In Proceedings of the 30 th International Conference on Neural Information Proce-ssing Systems (NIPS’16) , 2016: 2810-2818. |
[22] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE confe-rence on computer vision and pattern recognition, 2016: 770-778. |
[23] | Hu C, Zhang Y, Zhang W, et al. Low-dose CT via convo-lutional neural network[J]. Biomedical Optics Express, 2017,8(2):679-694. |
[24] | Yang Q, Yan P, Kalra M K, et al. CT image denoising with perceptive deep neural networks[J]. arXiv preprint arXiv: 1702. 07019, 2017. |
[25] | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]. The 3rd International Conference on Learning Representations (ICLR2015). https://arxiv.org/abs/1409.1556. |
[26] | 张雄, 杨琳琳, 上官宏 等. 基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法[J]. 电子与信息学报, 2021,43(8):2404-2413. |
[27] | Gholizadeh-Ansari M, Alirezaie J, Babyn P. Low-dose CT Denoising with Dilated Residual Network[C]. 40 th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) , 2018: 5117-5120. |
[28] | Kadimesetty V S, Gutta S, Ganapathy S, et al. Convo-lutional Neural Network-Based Robust Denoising of Low-Dose Computed Tomography Perfusion Maps[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018,3(2):137-152. |
[29] | Liu P, Li Y, Basha M, et al. Neural Network Evolution Using Expedited Genetic Algorithm for Medical Image Denoising[C]. Medical Image Computing and Computer Assisted Intervention - MICCAI, 2018: 12-20. |
[30] | Han Y, Ye J. Framing U-Net via Deep Convolutional Fra-melets: Application to Sparse-View CT[J]. IEEE Tran-sactions on Medical Imaging, 2018,37(6):1418-1429. |
[31] | Khoroushadi M, Sadegh M. Enhancement in low-dose computed tomography through image denoising techniques: Wavelets and deep learning[D]. Ph.D. thesis, ProQuest Dissertations Publishing. 2018. |
[32] | Green M, Marom E, Konen E, et al. Learning Real Noise for Ultra-Low Dose Lung CT Denoising[C]. Patch-Based Techniques in Medical Imaging, 2018: 3-11. |
[33] | Li M, Hsu W, X Xie, et al. SACNN: Self-Attention Con-volutional Neural Network for Low-Dose CT Den-oising with Self-supervised Perceptual Loss Network[J]. IEEE Transactions on Medical Imaging, 2020,39(7):2289-2301. |
[34] | Hendriksen A A, Pelt D M, Batenburg K J. Noise2Inverse: Self-supervised deep convolutional denoising for linear inverse problems in imaging[J]. IEEE Transactions on Computational Imaging, 2020,6:1320-1335. |
[35] | Wu D, Ren H, Li Q. Self-supervised Dynamic CT Per-fusion Image Denoising with Deep Neural Networks[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021,5(3):350-361. |
[36] | Du W, Chen H, Yang H. Learning Invariant Representa-tion for Unsupervised Image Restoration[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition (CVPR), 2020: 14471-14480. |
[37] | Chen K, Long K, Ren Y, Sun J, Pu X. Lesion-Inspired Denoising Network: Connecting Medical Image Denoi-sing and Lesion Detection[C]. Proceedings of the 29th ACM International Conference on Multimedia, 2021: 3283-3292. |
[38] | Wolterink J M, Leiner T, Viergever M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE transactions on medical imaging, 2017,36(12):2536-2545. |
[39] | Isola P, Zhu J Y, Zhou T, et al. Image-to-Image Tra-nslation with Conditional Adversarial Networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recog-nition (CVPR), 2017: 5967-5976. |
[40] | Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Gene-rative Adversarial Networks[J]. Advances in Neural Infor-mation Processing Systems, 2014,3:2672-2680. |
[41] | Burlina P M, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA ophthalmology, 2017,135(11):1170-1176. |
[42] | Maas A L, Hannun A Y, Ng A Y. Rectifier Nonlinearities improve neural network acoustic models[C]. In Proc. ICML, 2013,30(1):3. |
[43] | Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]. Procee-dings of the thirteenth international conference on artifi-cial intelligence and statistics. JMLR Workshop and Con-ference Proceedings, 2010: 249-256. |
[44] | Yu A, Liu X, Wei X, et al. Generative Adversarial Netw-orks with Dense Connection for Optical Coherence Tomo-graphy Images Denoising[C]. 2018 11th Intern-ational Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2018: 1-5. |
[45] | Abbasi A, Monadjemi A, Fang L, et al. Three-dim-ensional optical coherence tomography image denoising through multi-input fully-convolutional networks[J]. Computers in Biology and Medicine, 2019,108:1-8. |
[46] | Ma Y, Chen X, Zhu W, et al. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN[J]. Biomedical optics express, 2018,9(11):5129-5146. |
[47] | Hong Z, Fan X, Jiang T, et al. End-to-End Unpaired Image Denoising with Conditional Adversarial Networks[J]. Proceedings of the AAAI Conference on Artificial Intelli-gence, 2020,34(4):4140-4149. |
[48] | Park H S, Baek J, You S K, et al. Unpaired image denoi-sing using a generative adversarial network in X-ray CT[J]. IEEE Access, 2019,7:110414-110425. |
[49] | You C, Yang Q, Shan H, et al. Structurally-sensitive Mul-ti-scale Deep Neural Network for Low-Dose CT Denoi-sing[J]. IEEE Access, 2018,6:41839-41855. |
[50] | Yang Q, Yan P, Zhang Y, et al. Low-Dose CT Image De-noising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss[J]. IEEE Tran-sactions on Medical Imaging, 2018,37(6):1348-1357. |
[51] | Chen K, Huang J, Sun J, et al. Task-Driven Deep Lear-ning for LDCT Image Denoising[C]. In The Fourth Inter-national Symposium on Image Computing and Digital Medicine. Association for Computing Machinery, New York, NY, USA, 2020: 35-39. |
[52] | 段影影. 医学图像质量评价方法研究[D]. 广东:南方医科大学, 2010. |
[53] | Shan H, Padole A, Homayounieh F, et al. Competitive performance of a modularized deep neural network com-pared to commercial algorithms for low-dose CT image reconstruction[J]. Nature Machine Intelligence, 2019,1(6):269-276. |
[54] | 段影影, 马建华, 陈武凡, 等. 改进的结构相似医学图像质量评价方法[J]. 计算机工程与应用, 2010,46(2):145-149. |
[55] | 张剑华, 张自然, 汪晓妍, 等. 基于结构显著性的医学图像质量评价[J]. 浙江工业大学学报, 2015,43(6):636-641. |
[56] | Virendra K, Gu Y, Satrajit B, et al. Radiomics: the pro-cess and the challenge[J]. Magnetic Resonance Imaging, 2012,30(9):1234-1248. |
[57] | 陆锐, 何健, 周科峰, 等. 自动管电流调制扫描及ASIR重建下胸部CT噪声指数的优化[J]. 医学影像学杂志, 2016,26(06):1012-1016. |
[58] | Junior F, Raniery R, Koenigkam-Santos M, Cipriano F, et al. Radiomics-based features for pattern recognition of lung cancer histopathology and metastases[J]. Computer Methods and Programs in Biomedicine, 2018,159:23-30. |
[59] | Zhang Q, Xiao Y, Suo J, et al. Sonoelastomics for Breast Tumor Classification: A Radiomics Approach with Clustering-Based Feature Selection on Sonoelastography[J]. Ultrasound in medicine & biology, 2017,43(5):1058-1069. |
[60] | Coroller T, Grossmann P, Hou Y, et al. CT-Based radiomic signature predicts distant metastasis in lung adenocar-cinoma[J]. Radiotherapy and Oncology, 2015,114(3):345-350. |
[61] | Visvikis D, Rest C, Jaouen V, et al. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications[J]. European Journal of Nuclear Medicine, 2019,46(13):2630-2637. |
[1] | 许淞源,刘峰. ESDRec:一种面向地球大数据平台的数据推荐模型[J]. 数据与计算发展前沿, 2023, 5(1): 55-64. |
[2] | 陈琼,杨咏,黄天林,冯媛. 小样本图像语义分割综述[J]. 数据与计算发展前沿, 2021, 3(6): 17-34. |
[3] | 何涛,王桂芳,马廷灿. 基于词嵌入语义异常的跨学科研究内容发现方法[J]. 数据与计算发展前沿, 2021, 3(6): 50-59. |
[4] | 张怡宁,何洪波,王闰强. 热门数字音频预测技术综述[J]. 数据与计算发展前沿, 2021, 3(4): 81-92. |
[5] | 陈子健,李俊,岳兆娟,赵泽方. 基于自编码器与属性信息的混合推荐模型[J]. 数据与计算发展前沿, 2021, 3(3): 148-155. |
[6] | 肖建平,龙春,赵静,魏金侠,胡安磊,杜冠瑶. 基于深度学习的网络入侵检测研究综述[J]. 数据与计算发展前沿, 2021, 3(3): 59-74. |
[7] | 李序,连一峰,张海霞,黄克振. 网络安全知识图谱关键技术[J]. 数据与计算发展前沿, 2021, 3(3): 9-18. |
[8] | 赵伟昱,张宏海,仲波. 基于深度学习的遥感影像地块分割方法[J]. 数据与计算发展前沿, 2021, 3(2): 133-141. |
[9] | 沈飙,陈扬,杨琛,刘博文. 海洋科学中尺度涡的计算机视觉检测和分析方法[J]. 数据与计算发展前沿, 2020, 2(6): 30-41. |
[10] | 任荟颖,王婧,王彦棡. 基于AutoML的湍流建模[J]. 数据与计算发展前沿, 2020, 2(4): 121-131. |
[11] | 张圣林,林潇霏,孙永谦,张玉志,裴丹. 基于深度学习的无监督KPI异常检测[J]. 数据与计算发展前沿, 2020, 2(3): 87-100. |
[12] | 陈雷,袁媛. 基于深度迁移学习的农业病害图像识别[J]. 数据与计算发展前沿, 2020, 2(2): 111-119. |
[13] | 刘成林. 文档图像识别技术回顾与展望[J]. 数据与计算发展前沿, 2019, 1(2): 17-25. |
[14] | 俞益洲, 马杰超, 石德君, 周振. 深度学习在医学影像分析中的应用综述[J]. 数据与计算发展前沿, 2019, 1(2): 37-52. |
[15] | 马艳军,于佃海,吴甜,王海峰. 飞桨:源于产业实践的开源深度学习平台[J]. 数据与计算发展前沿, 2019, 1(1): 105-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||