数据与计算发展前沿 ›› 2020, Vol. 2 ›› Issue (5): 99-109.

doi: 10.11871/jfdc.issn.2096-742X.2020.05.010

• 技术与应用 • 上一篇    下一篇

深度学习技术在学科融合研究中的应用

刘晓东1,*(),倪浩然2()   

  1. 1.中国科学院计算机网络信息中心,信息化战略发展与评估中心,北京 100190
    2.华威大学,真实系统数学,英国 考文垂,CV4 7HP
  • 收稿日期:2020-07-02 出版日期:2020-10-20 发布日期:2020-10-30
  • 通讯作者: 刘晓东
  • 作者简介:Liu Xiaodong is an engineer of CNIC. His research interests are data science and artificial intelligence.
    In this paper, he is mainly responsible for the data organization, experimental design and experimental result presentations.
    E-mail: liuxiaodong@cnic.cn|Ni Haoran is a master student (leading to Ph.D.) at the Mathematics of Systems CDT at Warwick University. His research interests are distributed at Numerical Analysis, Natural Language Processing, Machine Learning Algorithms and Optimal Transports.
    In this paper, he is mainly responsible for the experiments and the analysis of experimental results.
    E-mail: Haoran.ni@warwick.ac.uk

Application of Deep Learning Technology in Discipline Integration Research

Liu Xiaodong1,*(),Ni Haoran2()   

  1. 1. Center of Informatization Strategy and Evaluation, Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
    2. Mathematics for Real-World Systems CDT, University of Warwick, Coventry CV4 7HP, United Kingdom
  • Received:2020-07-02 Online:2020-10-20 Published:2020-10-30
  • Contact: Liu Xiaodong

摘要:

【目的】 我们使用深度学习模型对于文章进行多分类,研究论文发表机构的学科融合的科研现状。 【方法】 我们设计了“多类别分类”模型,并应用卷积神经网络对中国科学院产生的8个不同主题的研究论文摘要进行分类。 【结果】 结果表明,科学研究涉及的学科交叉融合变得日趋紧密。 【结论】 多学科的融合交叉促进了科研产出,该研究可进一步用于科研机构的战略规划部署和评价等问题。

关键词: 文本分类, 自然语言处理, 卷积神经网络, 分类算法

Abstract:

[Objective] We use deep learning models to multi-classify articles and analyze the disciplinary integration situation of the corresponding institutions. [Methods] In this paper, we design a one-versus-rest classification model and applied convolutional neural networks to categorize paper abstracts of 8 different main subjects produced by Chinese Academy of the Sciences. [Results] The results show that the cross-integration of disciplines involved in scientific research becomes a more frequent practice and the integration of academic fields are promoting the number of publications of scientific research papers. [Conclusions] This research can benefit the strategic planning and deployment for scientific research institutions.

Key words: text classification, natural language processing, convolutional neural network, classification algorithm