[1] |
Loeb K R, Loeb L A. Significance of multiple mutations in cancer[J]. Carcinogenesis, 2000, 21(3):379-385.
pmid: 10688858
|
[2] |
Aaltonen L A, Peltomaki P, Leach F S, et al. Clues to the pathogenesis of familial colorectal cancer[J]. Science, 1993, 260(5109):812-816.
doi: 10.1126/science.8484121
|
[3] |
Imai K, Yamamoto H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics[J]. Carcinogenesis, 2008, 29(4):673-680.
doi: 10.1093/carcin/bgm228
|
[4] |
Yamamoto H, Adachi Y, Taniguchi H, et al. Interrelation-ship between microsatellite instability and microRNA in gastrointestinal cancer[J]. World journal of gastroen-terology: WJG, 2012, 18(22):2745-2755.
|
[5] |
Yamamoto H, Watanabe Y, Maehata T, et al. An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa[J]. World journal of gastroenterology: WJG, 2014, 20(14):3927-3937.
doi: 10.3748/wjg.v20.i14.3927
|
[6] |
Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer: a review[J]. Cancer treatment reviews, 2016, 51:19-26.
doi: 10.1016/j.ctrv.2016.10.005
|
[7] |
陈玮, 赵丹, 李晓东, 等. 肿瘤微卫星不稳定检测方法综述[J]. 计算机系统应用, 2018, 27(10):39-45.
|
[8] |
Libbrecht M W, Noble W S. Machine learning applica-tions in genetics and genomics[J]. Nature Reviews Genetics, 2015, 16(6):321-332.
doi: 10.1038/nrg3920
|
[9] |
俞益洲, 马杰超, 石德君, 等. 深度学习在医学影像分析中的应用综述[J]. 数据与计算发展前沿, 2019, 1(2):37-52.
|
[10] |
曾瀞瑶, 苑娜, 魏文娟, 等. 高通量计算在大规模人群队列基因组数据解析应用中的挑战[J]. 数据与计算发展前沿, 2020, 2(1):117-127.
|
[11] |
Kelkar Y D, Strubczewski N, Hile S E, et al. What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats[J]. Genome biology and evolution, 2010, 2:620-635.
doi: 10.1093/gbe/evq046
|
[12] |
Vilar E, Gruber S B. Microsatellite instability in colorectal cancer—the stable evidence[J]. Nature reviews Clinical oncology, 2010, 7(3):153-162.
doi: 10.1038/nrclinonc.2009.237
|
[13] |
Baretti M, Le D T. DNA mismatch repair in cancer[J]. Pharmacology & therapeutics, 2018, 189:45-62.
|
[14] |
Ribic C M, Sargent D J, Moore M J, et al. Tumor micro-satellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer[J]. New England Journal of Medicine, 2003, 349(3):247-257.
doi: 10.1056/NEJMoa022289
|
[15] |
Laiho P, Launonen V, Lahermo P, et al. Low-level microsatellite instability in most colorectal carcinomas[J]. Cancer research, 2002, 62(4):1166-1170.
|
[16] |
Papadopoulos N, Lindblom A. Molecular basis of HNPCC: mutations of MMR genes[J]. Human mutation, 1997, 10(2):89-99.
doi: 10.1002/(ISSN)1098-1004
|
[17] |
Vasen H F, Watson P, Mecklin J P, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC[J]. Gastroenterology, 1999, 116(6):1453-1456.
pmid: 10348829
|
[18] |
Scapoli C, Leon M P D, Sassatelli R, et al. Genetic epidemiology of hereditary non-polyposis colorectal cancer syndromes in Modena, Italy: results of a complex segregation analysis[J]. Annals of human genetics, 1994, 58(3):275-295.
doi: 10.1111/ahg.1994.58.issue-3
|
[19] |
Lynch H T, De la Chapelle A. Hereditary colorectal cancer[J]. New England Journal of Medicine, 2003, 348(10):919-932.
doi: 10.1056/NEJMra012242
|
[20] |
Hampel H, Frankel W L, Martin E, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer[J]. Journal of Clinical Oncology, 2008, 26(35):5783-5788.
doi: 10.1200/JCO.2008.17.5950
|
[21] |
Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer[J]. Journal of Clinical Oncology, 2019, 37(4):286-295.
|
[22] |
de la Chapelle A, Hampel H. Clinical relevance of micro-satellite instability in colorectal cancer[J]. Journal of Clinical Oncology, 2010, 28(20):3380-3387.
doi: 10.1200/JCO.2009.27.0652
pmid: 20516444
|
[23] |
Valle L, Perea J, Carbonell P, et al. Clinicopathologic and pedigree differences in Amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status[J]. Journal of clinical oncology, 2007, 25(7):781-786.
doi: 10.1200/JCO.2006.06.9781
|
[24] |
Sargent D J, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer[J]. Journal of Clinical Oncology, 2010, 28(20):3219-3226.
doi: 10.1200/JCO.2009.27.1825
pmid: 20498393
|
[25] |
袁瑛. 结直肠癌及其他相关实体瘤微卫星不稳定性检测中国专家共识[J]. 实用肿瘤杂志, 2019, 34(5):381-389.
|
[26] |
McGranahan N, Furness A J, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280):1463-1469.
doi: 10.1126/science.aaf1490
|
[27] |
Smyrk T C, Watson P, Kaul K, et al. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma[J]. Cancer, 2001, 91(12):2417-2422.
doi: 10.1002/(ISSN)1097-0142
|
[28] |
Le D T, Uram J N, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. New England Journal of Medicine, 2015, 372(26):2509-2520.
doi: 10.1056/NEJMoa1500596
|
[29] |
Kim J H, Park H E, Cho N-Y, et al. Characterisation of PD-L1-positive subsets of microsatellite-unstable colorectal cancers[J]. British journal of cancer, 2016, 115(4):490-496.
doi: 10.1038/bjc.2016.211
|
[30] |
Dudley J C, Lin M-T, Le D T, et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clinical Cancer Research, 2016, 22(4):813-820.
doi: 10.1158/1078-0432.CCR-15-1678
|
[31] |
Berg K D, Glaser C L, Thompson R E, et al. Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction[J]. The Journal of Molecular Diagnostics, 2000, 2(1):20-28.
doi: 10.1016/S1525-1578(10)60611-3
|
[32] |
Shia J, Tang L H, Vakiani E, et al. Immunohistochemistry as first-line screening for detecting colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: a 2-antibody panel may be as predictive as a 4-antibody panel[J]. The American journal of surgical pathology, 2009, 33(11):1639-1645.
doi: 10.1097/PAS.0b013e3181b15aa2
|
[33] |
Niu B, Ye K, Zhang Q, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data[J]. Bioinformatics, 2014, 30(7):1015-1016.
doi: 10.1093/bioinformatics/btt755
|
[34] |
Salipante S J, Scroggins S M, Hampel H L, et al. Micro-satellite instability detection by next generation sequen-cing[J]. Clinical chemistry, 2014, 60(9):1192-1199.
doi: 10.1373/clinchem.2014.223677
|
[35] |
Kautto E A, Bonneville R, Miya J, et al. Performance ev-aluation for rapid detection of pan-cancer microsatellite instability with MANTIS[J]. Oncotarget, 2017, 8(5):7452-7463.
doi: 10.18632/oncotarget.13918
pmid: 27980218
|
[36] |
Middha S, Zhang L, Nafa K, et al. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data[J]. JCO precision onco-logy, 2017, 1:1-17.
|
[37] |
陈梅丽, 马英克, 李茹姣, 等. 基因组学数据分析方法现状和展望[J]. 数据与计算发展前沿, 2020, 2(2):1-19.
|
[38] |
Huang M N, McPherson J R, Cutcutache I, et al. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations[J]. Scientific reports, 2015, 5:13321.
doi: 10.1038/srep13321
|
[39] |
Wang C, Liang C. MSIpred: a python package for tumor microsatellite instability classification from tumor mutation annotation data using a support vector machine[J]. Scientific reports, 2018, 8(1):17546.
doi: 10.1038/s41598-018-35682-z
|
[40] |
Hause R J, Pritchard C C, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types[J]. Nature medicine, 2016, 22(11):1342-1350.
doi: 10.1038/nm.4191
|
[41] |
Foltz S M, Liang W-W, Xie M, et al. MIRMMR: binary classification of microsatellite instability using methyla-tion and mutations[J]. Bioinformatics, 2017, 33(23):3799-3801.
doi: 10.1093/bioinformatics/btx507
|
[42] |
Escudié F, Van Goethem C, Grand D, et al. MIAmS: microsatellite instability detection on NGS amplicons data[J]. Bioinformatics, 2019, 36(6):1915-1916.
|
[43] |
Delgado P O, Alves B C A, de Sousa Gehrke F, et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer[J]. Tumor Biology, 2013, 34(2):983-986.
doi: 10.1007/s13277-012-0634-6
|