数据与计算发展前沿 ›› 2021, Vol. 3 ›› Issue (2): 120-132.
doi: 10.11871/jfdc.issn.2096-742X.2021.02.014
郭佳龙1,2(),王宗国1,2,*(),王彦棡1,2(),赵旭山1(),宿彦京3(),刘志威1,2()
收稿日期:
2020-12-11
出版日期:
2021-04-20
发布日期:
2021-05-18
通讯作者:
王宗国
作者简介:
郭佳龙,中国科学院计算机网络信息中心,硕士研究生,主要研究方向为材料信息学。本文承担工作为文献的搜集整理以及整体内容的撰写。基金资助:
GUO Jialong1,2(),WANG Zongguo1,2,*(),WANG Yangang1,2(),ZHAO Xushan1(),SU Yanjing3(),LIU Zhiwei1,2()
Received:
2020-12-11
Online:
2021-04-20
Published:
2021-05-18
Contact:
WANG Zongguo
摘要:
【目的】随着大数据时代的到来和材料基因组计划的提出,材料的研发模式开始由“试错法”向科学研究第四范式转变。本文主要针对新材料研发模式中涉及的计算机技术进行概述。【方法】作者跟踪调研了近年来材料计算科学和数据驱动材料研发的文献资料,对计算机技术在材料研发中的应用进行了总结和讨论。【结果】以材料计算科学和“数据+人工智能”驱动为基础的创新模式,可以显著提升材料研究效率,从多维度、新角度探索材料多参数或性能之间的关联关系。【结论】计算机技术在材料研发中的广泛应用对加快新材料研发、加深对材料的认知以及关键技术的突破具有重要意义。
郭佳龙,王宗国,王彦棡,赵旭山,宿彦京,刘志威. 基于计算机技术的材料研发方法概述[J]. 数据与计算发展前沿, 2021, 3(2): 120-132.
GUO Jialong,WANG Zongguo,WANG Yangang,ZHAO Xushan,SU Yanjing,LIU Zhiwei. A Review of Material Research and Development Methods Based on Computer Technology[J]. Frontiers of Data and Computing, 2021, 3(2): 120-132.
[1] |
AGRAWAL A, CHOUDHARY A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science[J]. APL Materials, 2016,4(5):053208.
doi: 10.1063/1.4946894 |
[2] | SCHLEDER G R, PADILHA A C M, ACOSTA C M, et al. From DFT to Machine Learning: recent approaches to Materials Science - a review[J]. Journal of Physics: Materials, 2019,2(3). |
[3] |
ONG S P, RICHARDS W D, JAIN A, et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013,68:314-319.
doi: 10.1016/j.commatsci.2012.10.028 |
[4] |
MATHEW K, MONTOYA J H, FAGHANINIA A, et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows[J]. Computational Materials Science, 2017,139:140-152.
doi: 10.1016/j.commatsci.2017.07.030 |
[5] | ASE-Developers. Atomic Simulation Environment[EB/OL]. [2020-11-1]. https://wiki.fysik.dtu.dk/ase/about.html. |
[6] |
PIZZI G, CEPELLOTTI A, SABATINI R, et al. AiiDA: automated interactive infrastructure and database for computational science[J]. Computational Materials Science, 2016,111:218-230.
doi: 10.1016/j.commatsci.2015.09.013 |
[7] |
ONG S P, CHOLIA S, JAIN A, et al. The Materials Applica-tion Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles[J]. Computational Materials Science, 2015,97:209-215.
doi: 10.1016/j.commatsci.2014.10.037 |
[8] | JAIN A, ONG S P, CHEN W, et al. FireWorks: a dynamic workflow system designed for high-throughput applications[J]. Concurrency and Computation: Practice and Experi-ence, 2015,27(17):5037-5059. |
[9] |
CALDERON C E, PLATA J J, TOHER C, et al. The AFLOW standard for high-throughput materials science calcula-tions[J]. Computational Materials Science, 2015,108:233-238.
doi: 10.1016/j.commatsci.2015.07.019 |
[10] |
CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: An automatic framework for high-throughput materials discovery[J]. Computational Materials Science, 2012,58:218-226.
doi: 10.1016/j.commatsci.2012.02.005 |
[11] |
YANG X, WANG Z, ZHAO X, et al. MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources[J]. Computational Materials Science, 2018,146:319-333.
doi: 10.1016/j.commatsci.2018.01.039 |
[12] | 杨炯, 席丽丽, 骆军, et al. 上海大学第一性原理高通量计算平台与材料应用案例[C]. 北京: 北京科技大学, 2018. |
[13] | Mayeul d'Avezac. Pylada [EB/OL]. [2020-11-1]. http://pylada.github.io/pylada/about.html. |
[14] |
MATHEW K, SINGH A K, GABRIEL J J, et al. MPInter-faces: A Materials Project based Python tool for high-throughput computational screening of interfacial systems[J]. Computational Materials Science, 2016,122:183-190.
doi: 10.1016/j.commatsci.2016.05.020 |
[15] |
AGRAWAL A, CHOUDHARY A. Deep materials informatics: Applications of deep learning in materials science[J]. MRS Communications, 2019,9(3):779-792.
doi: 10.1557/mrc.2019.73 |
[16] |
NUNEZ M. Exploring materials band structure space with unsupervised machine learning[J]. Computational Materials Science, 2019,158(15 February 2019):117-123.
doi: 10.1016/j.commatsci.2018.11.002 |
[17] |
ABBOD M F, LINKENS D A, ZHU Q, et al. Physically based and neuro-fuzzy hybrid modelling of thermome-chanical processing of aluminium alloys[J]. Materials Science and Engineering: A, 2002,333(1):397-408.
doi: 10.1016/S0921-5093(01)01873-1 |
[18] |
FANG S F, WANG M P, SONG M. An approach for the aging process optimization of Al-Zn-Mg-Cu series alloys[J]. Materials & Design, 2009,30(7):2460-2467.
doi: 10.1016/j.matdes.2008.10.008 |
[19] |
HAN Y F, ZENG W D, SHU Y, et al. Prediction of the mechanical properties of forged Ti-10V-2Fe-3Al titanium alloy using FNN[J]. Computational Materials Science, 2011,50(3):1009-1015.
doi: 10.1016/j.commatsci.2010.10.040 |
[20] |
GOSSETT E, TOHER C, OSES C, et al. AFLOW-ML: A RESTful API for machine-learning predictions of materials properties[J]. Computational Materials Science, 2018,152:134-145.
doi: 10.1016/j.commatsci.2018.03.075 |
[21] |
WARD L, DUNN A, FAGHANINIA A, et al. Matminer: An open source toolkit for materials data mining[J]. Computational Materials Science, 2018,152:60-69.
doi: 10.1016/j.commatsci.2018.05.018 |
[22] |
UENO T, RHONE T D, HOU Z, et al. COMBO: An efficient Bayesian optimization library for materials science[J]. Materials Discovery, 2016,4:18-21.
doi: 10.1016/j.md.2016.04.001 |
[23] |
KOLB B, LENTZ L C, KOLPAK A M. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods[J]. Sci Rep, 2017,7(1):1192.
doi: 10.1038/s41598-017-01251-z |
[24] |
ARTRITH N, URBAN A. An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2[J]. Computational Materials Science, 2016,114:135-150.
doi: 10.1016/j.commatsci.2015.11.047 |
[25] |
ARTRITH N, URBAN A, CEDER G. Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species[J]. Physical Review B, 2017,96(1):014112.
doi: 10.1103/PhysRevB.96.014112 |
[26] | COOPER A M, KAESTNER J, URBAN A, et al. Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide[J]. Npj Computational Materials, 2020,6(1). |
[27] |
WANG H, ZHANG L, HAN J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018,228:178-184.
doi: 10.1016/j.cpc.2018.03.016 |
[28] |
KHORSHIDI A, PETERSON A A. Amp: A modular approach to machine learning in atomistic simulations[J]. Computer Physics Communications, 2016,207:310-324.
doi: 10.1016/j.cpc.2016.05.010 |
[29] |
YAO K, HERR J E, TOTH D W, et al. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics[J]. Chem Sci, 2018,9(8):2261-2269.
doi: 10.1039/C7SC04934J |
[30] |
DENG Y, ZENG H, JIANG Y, et al. Ridge regression for predicting elastic moduli and hardness of calcium aluminosilicate glasses[J]. Materials Research Express, 2018,5(3):035205.
doi: 10.1088/2053-1591/aab723 |
[31] | Liu L, Yan Y, Li J, et al. the Proceedings - 5th International Conference on Frontier of Computer Science and Technology: Predicting the Formation of Microporous Aluminophosphate AlPO4-5 Using Ridge Regression[C]. Changchun: IEEE, 2010: 483-488. |
[32] |
Wu Y R, Li H P, Gan X S. SVM Regression Modeling Based on Properties of Engineering Materials with PLS Feature Extraction[J]. Advanced Materials Research, 2014,848:122-125.
doi: 10.4028/www.scientific.net/AMR.848 |
[33] |
VAROL T, CANAKCI A, OZSAHIN S. Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024-B4C composites produced by powder metallurgy[J]. Composites Part B-Engineering, 2013,54(8):224-233.
doi: 10.1016/j.compositesb.2013.05.015 |
[34] | PILANIA G, MANNODI-KANAKKITHODI A, UBER-UAGAI B P, et al. Machine learning bandgaps of double perovskites[J]. Scientific Reports, 2016,6(1). |
[35] |
ROEKEGHEM A, CARRETE J, OSES C, et al. High-throughput computation of thermal conductivity of high-temperature solid phases: The case of oxide and fluoride perovskites[J]. Physical Review X, 2016,6(4):041061.
doi: 10.1103/PhysRevX.6.041061 |
[36] |
GU G H, NOH J, KIM I, et al. Machine learning for renewable energy materials[J]. Journal of Materials Chemistry A, 2019,7(29):17096-17117.
doi: 10.1039/C9TA02356A |
[37] |
LIU Y, NIU C, WANG Z, et al. Machine learning in materials genome initiative: A review[J]. Journal of Materials Science and Technology, 2020,57:113-122.
doi: 10.1016/j.jmst.2020.01.067 |
[38] |
SIGMUND G, GHARASOO M, HUFFER T, et al. Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials[J]. Environ Sci Technol, 2020,54(7):4583-4591.
doi: 10.1021/acs.est.9b06287 |
[39] | OUYANG R, CURTAROLO S, AHMETCIK E, et al. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates[J]. 2018,2(8):083802. |
[40] |
BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides[J]. Science Advances, 2019, 5(2):eaav0693.
doi: 10.1126/sciadv.aav0693 |
[41] |
OUYANG R. Exploiting Ionic Radii for Rational Design of Halide Perovskites[J]. Chemistry of Materials, 2019,32:595-604.
doi: 10.1021/acs.chemmater.9b04472 |
[42] |
Loftis C, Yuan K, Zhao Y, et al. Lattice Thermal Conductivity Prediction using Symbolic Regression and Machine Learning[J]. JPCA, 2021,125(1):435-450.
doi: 10.1021/acs.jpca.0c08103 |
[43] |
TAKAHASHI K, TANAKA Y. Material synjournal and design from first principle calculations and machine learning[J]. Computational Materials Science, 2016,112:364-367.
doi: 10.1016/j.commatsci.2015.11.013 |
[44] |
MEREDIG B, AGRAWAL A, KIRKLIN S, et al. Combinatorial screening for new materials in uncon-strained composition space with machine learning[J]. Physical Review B, 2014,89(9):094104.
doi: 10.1103/PhysRevB.89.094104 |
[45] | RYAN K. Crystal Structure Prediction via Deep Learning[D]. Florida: ProQuest LLC, 2018. |
[46] | TAGADE P M, ADIGA S P, PANDIAN S, et al. Attribute driven inverse materials design using deep learning Bayesian framework[J]. npj Computational Materials, 2019,5(1). |
[47] | UMEHARA M, STEIN H S, GUEVARRA D, et al. Analyzing machine learning models to accelerate generation of fundamental materials insights[J]. npj Computational Materials, 2020,4(4):135-143. |
[48] | KusnE A. GILAD, YU HESHAN, WU CHANGMING, et al. On-the-fly closed-loop materials discovery via Bayesian active learning[J]. Nature Communications, 2020,11(1). |
[49] |
ZHONG M, TRAN K, MIN Y, et al. Accelerated disco-very of CO2 electrocatalysts using active machine learning[J]. Nature, 2020,581(7807):178-183.
doi: 10.1038/s41586-020-2242-8 |
[50] | YANG Z, AL-BAHRANI R, REID A C E, et al. proceed-ings of the 2019 International Joint Conference on Neural Networks: Deep learning based domain knowledge integration for small datasets: Illustrative applications in materials informatics[C]. Budapest: Institute of Electrical and Electronics Engineers Inc, 2019, 1-8. |
[51] | IERACITANO C, PANTO F, MAMMONE N, et al. Toward an Automatic Classification of SEM Images of Nanomaterials via a Deep Learning Approach[M]. // Springer Science and Business Media Deutschland GmbH. 2020: 61-72. |
[52] |
LI X, LIU Z, CUI S, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2019,347(APR. 15):735-753.
doi: 10.1016/j.cma.2019.01.005 |
[53] | 游洋, 杜婉, 李惟驹, 陈竞哲. 基于机器学习方法的二维材料带隙预测[J]. 上海大学学报(自然科学版), 2020,26(05):824-833. |
[54] | 李霞, 苏航, 陈晓玲, et al. 材料数据库的现状与发展趋势[J]. 中国冶金, 2007,17(6):4-8. |
[55] | PRICE D. Guide to materials databases[J]. Materials World, 1993,1(7):418-422. |
[56] | 汪洪, 项晓东, 张澜庭. 数据+人工智能是材料基因工程的核心[J]. 科技导报, 2018,36(14):15-21. |
[57] |
BLAISZIK B, CHARD K, PRUYNE J, et al. The Materials Data Facility: Data Services to Advance Materials Science Research[J]. Jom, 2016,68(8):2045-2052.
doi: 10.1007/s11837-016-2001-3 |
[58] |
BLAISZIK B, WARD L, SCHWARTING M, et al. A data ecosystem to support machine learning in materials science[J]. Mrs Communications, 2019,9(4):1125-1133.
doi: 10.1557/mrc.2019.118 |
[59] | GUNTER D, CHOLIA S, JAIN A, et al. Community Accessible Datastore of High-Throughput Calculations: Experiences from the Materials Project[M]. // 2012 SC Companion: High Performance Computing, Networking Storage and Analysis. Salt Lake: IEEE, 2012: 1244-1251. |
[60] |
JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. Apl Materials, 2013,1(1):011002.
doi: 10.1063/1.4812323 |
[61] |
SAAL J E, KIRKLIN S, AYKOL M, et al. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)[J]. Jom, 2013,65(11):1501-1509.
doi: 10.1007/s11837-013-0755-4 |
[62] |
CURTAROLO S, SETYAWAN W, WANG S, et al. AFLO-WLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations[J]. Computational Materials Science, 2012,58(none):227-235.
doi: 10.1016/j.commatsci.2012.02.002 |
[63] | 高志玉, 刘国权. 在线材料数据库进展与NIMS/MatWeb案例研究[J]. 材料工程, 2013, (11):89-96. |
[64] | VILLARS P, CENZUAL K, GLADYSHEVSKII R, et al. Pauling File: Toward a Holistic View[M]. // Materials Informatics, 2019: 55-106. |
[65] | YAMAZAKI M, XU Y, MURATA M, et al. proceedings of the BALTICA VII - Life Management and Maintenance for Power Plants: NIMS structural materials databases and cross search engine - MatNavi[C]. Helsinki: Technical Research Center of Finland, 2007. |
[66] | HELLENBRANDT M. The Inorganic Crystal Structure Database (ICSD)—Present and Future[J]. Crystallo-graphy Reviews, 2004,10(1):17-22. |
[67] |
KIM M, SINGH S P, LEE J-W, et al. Identification of a narrow band red light-emitting phosphor using computa-tional screening of ICSD: Its synjournal and optical chara-cterization[J]. Journal of Alloys and Compounds, 2019,774:338-346.
doi: 10.1016/j.jallcom.2018.09.370 |
[68] |
WHITE P S, RODGERS J R, LE P Y. Crystmet: A database of the structures and powder patterns of metals and intermetallics[J]. Acta Crystallographica Section B: Structural Science, 2002,58(3 PART 1):343-348.
doi: 10.1107/S0108768102002902 |
[69] |
GRAŽULIS S, DAŠKEVI A, MERKYS A, et al. Crystallo-graphy Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration[J]. Nucleic Acids Research, 2012,40(D1):D420-D7.
doi: 10.1093/nar/gkr900 |
[70] | HACHMANN J, OLIVARES-AMAYA R, JINICH A, et al. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry - the Harvard Clean Energy Project[J]. Energy & Environmental Science, 2014,7(2):698-704. |
[71] |
PUCHALA B, TARCEA G, MARQUIS E A, et al. The Materials Commons: A Collaboration Platform and Information Repository for the Global Materials Community[J]. JOM, 2016,68(8):2035-2044.
doi: 10.1007/s11837-016-1998-7 |
[72] | 刘芳宁, 王越, 孙瑞侠. 材料数据库的现状与发展趋势[J]. 科技创新导报, 2018,15(34):149-151. |
[73] |
COUDERT F-X. Materials Databases: The Need for Open, Interoperable Databases with Standardized Data and Rich Metadata[J]. Advanced Theory and Simulations, 2019,2(11):1900131.
doi: 10.1002/adts.v2.11 |
[74] | GLICK J. Ontologies and Databases - Knowledge Engineering for Materials Informatics[J]. Informatics for Materials Science and Engineering, 2013: 147-187. |
[75] |
DRAXL C, SCHEFFLER M. NOMAD: The FAIR concept for big data-driven materials science[J]. Mrs Bulletin, 2018,43(9):676-682.
doi: 10.1557/mrs.2018.208 |
[1] | 赵忠斌,蔡满春,芦天亮. 融合多头注意力机制的网络恶意流量检测[J]. 数据与计算发展前沿, 2022, 4(5): 60-67. |
[2] | 危婷,张宏海,蔺小丽,张蕾蕾,王妍,贾金峰. 云服务网站用户复访行为预测模型研究[J]. 数据与计算发展前沿, 2022, 4(3): 124-130. |
[3] | 孙永谦,张茹茹,林子涵,张圣林,谭智元,张玉志. KPI异常检测方法评估[J]. 数据与计算发展前沿, 2022, 4(3): 46-65. |
[4] | 鹿旭东,宋伟凤,郭伟,崔立真,林岳,姜涛. 大数据驱动的创新方法论与创新服务平台[J]. 数据与计算发展前沿, 2021, 3(5): 141-155. |
[5] | 张怡宁,何洪波,王闰强. 热门数字音频预测技术综述[J]. 数据与计算发展前沿, 2021, 3(4): 81-92. |
[6] | 蒲剑苏,朱正国,邵慧,高博洋,朱焱麟,闫宗楷,向勇. 基于可视化的固态电解质材料机器学习筛选与预测[J]. 数据与计算发展前沿, 2021, 3(4): 18-29. |
[7] | 张舒莹,韩鑫胤,何小雨,袁丹阳,栾海晶,李瑞琳,何佳茵,牛北方. 基于机器学习的基因组微卫星状态探测方法综述[J]. 数据与计算发展前沿, 2021, 3(3): 126-135. |
[8] | 肖建平,龙春,赵静,魏金侠,胡安磊,杜冠瑶. 基于深度学习的网络入侵检测研究综述[J]. 数据与计算发展前沿, 2021, 3(3): 59-74. |
[9] | 于建军,廖方宇,周小军,孙健英. 新一代ARP对管理应用创新的初探[J]. 数据与计算发展前沿, 2021, 3(2): 39-49. |
[10] | 任荟颖,王婧,王彦棡. 基于AutoML的湍流建模[J]. 数据与计算发展前沿, 2020, 2(4): 121-131. |
[11] | 王卷乐,程凯,韩雪华,张敏. 大数据驱动的资源学科领域数据分析前沿与应用[J]. 数据与计算发展前沿, 2020, 2(2): 20-30. |
[12] | 李姿昕,张能,熊斌,胡云凤,赵新鹏,黄海友. 材料科学数据库在材料研发中的应用与展望[J]. 数据与计算发展前沿, 2020, 2(2): 78-90. |
[13] | 钱旭,田子奇. 材料基因方法在材料设计中的应用[J]. 数据与计算发展前沿, 2020, 2(1): 128-141. |
[14] | 储中明, 肖邓杰, 乔予思, 万金宇. 机器学习在粒子加速器的应用[J]. 数据与计算发展前沿, 2019, 1(2): 110-120. |
[15] | 张智鹏,江佳伟,余乐乐,崔斌. Angel + : 基于Angel的分布式机器学习平台[J]. 数据与计算发展前沿, 2019, 1(1): 63-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||