[1] |
Zhu M, Ye K, Wang Y, et al. A deep learning approach for network anomaly detection based on AMF-LSTM[C]// IFIP international conference on network and parallel computing. Springer, Cham, 2018: 137-141.
|
[2] |
HUANG H, DENG H, CHEN J, et al. Automatic Multi-task Learning System for Abnormal Network Traffic Detection[J]. International Journal of Emerging Techno-logies in Learning, 2018, 13(4): 4-20.
|
[3] |
Kong L, Huang G, Wu K. Identification of abnormal network traffic using support vector machine[C]// 2017 18th international conference on parallel and distributed computing, applications and technologies (PDCAT), IEEE, 2017: 288-292.
|
[4] |
Dey S K, Rahman M M. Flow based anomaly detection in software defined networking: A deep learning approach with feature selection method[C]// 2018 4th international conference on electrical engineering and information & communication technology (iCEEiCT),IEEE, 2018: 630-635.
|
[5] |
NIYAZ Q, SUN W, JAVAID A Y. A deep learning based DDoS detection system in software-defined networking (SDN)[J]. arXiv preprint arXiv:161107400, 2016.
|
[6] |
GARG S, KAUR K, KUMAR N, et al. Hybrid deep-lea-rning-based anomaly detection scheme for suspicious flow detection in SDN: A social multimedia perspective[J]. IEEE Transactions on Multimedia, 2019, 21(3): 566-78.
doi: 10.1109/TMM.2019.2893549
|
[7] |
LI J, ZHAO Z, LI R. A machine learning based intrusion detection system for software defined 5G network[J]. arXiv preprint arXiv:170804571, 2017.
|
[8] |
A. Özgür, H. Erdem. A review of kdd99 dataset usage in intrusion detection and machine learning between 2010 and 2015[J]. PeerJ PrePrints, 2016, 4: e1954v1.
|
[9] |
Moustafa N, Slay J. The significant features of the UNSW-NB15 and the KDD99 data sets for network intrusion detection systems[C]// 2015 4th international workshop on building analysis datasets and gathering experience returns for security (BADGERS), IEEE, 2015: 25-31.
|
[10] |
王伟. 基于深度学习的网络流量分类及异常检测方法研究[D]. 中国科学技术大学, 2018.
|
[11] |
DAINOTTI A, PESCAPE A, CLAFFY K C. Issues and future directions in traffic classification[J]. IEEE net-work, 2012, 26(1): 35-40.
|
[12] |
SMAGULOVA K, JAMES A P. A survey on LSTM me-mristive neural network architectures and applications[J]. The European Physical Journal Special Topics, 2019, 228(10): 2313-2324.
doi: 10.1140/epjst/e2019-900046-x
|
[13] |
HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv: 150801991, 2015.
|
[14] |
SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[J]. arXiv preprint arXiv:180302155, 2018.
|
[15] |
A. Vaswani, N. Shazeer, N. Parmar, et al. Attention is all you need[C]. Advances in Neural Information Processing Systems, 2017: 5998-6008.
|
[16] |
Wang W, Zhu M, Zeng X, et al. Malware traffic class-ification using convolutional neural network for represen-tation learning[C]// 2017 International conference on infor-mation networking (ICOIN), IEEE, 2017: 712-717.
|
[17] |
SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[J]. ICISSp, 2018, 1: 108-116.
|