数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (4): 139-153.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.04.012

doi: 10.11871/jfdc.issn.2096-742X.2023.04.012

• 技术与应用 • 上一篇    

企业信用评级计算模型综述

田一擎1(),程曦2,冯博靖2,*()   

  1. 1.湖南大学,工商管理学院,湖南 长沙 410000
    2.中国科学院自动化研究所,北京 100190
  • 收稿日期:2022-04-26 出版日期:2023-08-20 发布日期:2023-08-23
  • 通讯作者: *冯博靖(E-mail: bojing.feng@cripac.ia.ac.cn
  • 作者简介:田一擎,湖南大学,工商管理学院,本科生,主要研究会计学和财务管理。
    本文负责论文总体框架、数据库建设、引言、第1章和第四章、论文修改、审定。
    TIAN Yiqing is an undergraduate student at the Business School of Hunan University. Her research interests include accounting and financial management.
    In this paper, she is responsible for the main framework, data set construction, preface, chapter 1 and chapter 4, paper revision and checking.
    E-mail: 1319455988@qq.com|冯博靖,中国科学院自动化研究所,硕士研究生,研究兴趣包括数据挖掘、金融风控,以及机器学习深度学习方法在金融尤其是在企业信用评级中的应用。
    本文负责第3章工作。
    FENG Bojing is pursuing his master’s degree in computer science at the Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science. His research interests include data mining, financial risk, machine learning and deep learning in finance, especially in corporate credit rating.
    In this paper, he is responsible for chapter 3.
    E-mail: bojing.feng@cripac.ia.ac.cn
  • 基金资助:
    中信建投证券项目(E1D21809)

A Review of Computational Models for Corporate Credit Rating

TIAN Yiqing1(),CHENG Xi2,FENG Bojing2,*()   

  1. 1. Business School, Hunan University, Changsha, Hunan 410000, China
    2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-04-26 Online:2023-08-20 Published:2023-08-23

摘要:

【目的】企业信用评级是社会经济有序和健康发展的客观要求和必然选择,本文旨在全面介绍人工智能和大数据时代企业信用评级的主要方法。【方法】通过对国内外的相关文献进行阅读和研究,本文对企业信用评级进行了系统的综述。本文从统计模型、机器学习模型和神经网络模型3个层面梳理了企业信用评级方法发展的脉络,总结了企业信用评级常用数据库,并且深入对比了主要模型的优缺点。最后本文提出了企业信用评级研究中存在的问题,对企业信用评级方法进行了总结与展望。【结果】本文为学术界和企业界了解企业信用评级的量化建模和数据资源提供了系统深入的导引。【结论】神经网络模型在企业信用评级领域仍然存在诸多瓶颈问题,动态图神经网络融合了神经网络的强大表达能力和图结构数据的可解释能力,并引入了时序信息,在企业信用评级领域有广阔的应用前景。

关键词: 企业信用评级, 统计方法, 机器学习, 神经网络

Abstract:

[Objective] Corporate credit rating is important to social economics and this paper aims to introduce the main methods for corporate credit rating in the era of artificial intelligence and big data. [Methods] This paper systematically reviews the main methods and databases of corporate credit rating through paper reading and investigation, including statistical models, machine learning models, and neural network models. Both advantages and disadvantages of these models are compared. Finally, the existing problems and future work in corporate credit rating are pointed out. [Results] This paper provides a good introduction to computational models and databases of corporate credit rating for both academia and industry. [Conclusions] There are still some problems with neural network models in corporate credit rating and dynamic graph neural networks are promising to better address the challenges in corporate credit rating.

Key words: corporate credit rating, statistical method, machine learning, neural network