[1] |
Hajek P, Michalak K. Feature selection in corporate credit rating prediction[J]. Knowledge-Based Systems, 2013, 51: 72-84.
doi: 10.1016/j.knosys.2013.07.008
|
[2] |
Kim K, Ahn H. A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach[J]. Computers & Operations Research, 2012, 39(8): 1800-1811.
doi: 10.1016/j.cor.2011.06.023
|
[3] |
Huang Z, Chen H, Hsu C J, et al. Credit rating analysis with support vector machines and neural networks: a market comparative study[J]. Decision support systems, 2004, 37(4): 543-558.
doi: 10.1016/S0167-9236(03)00086-1
|
[4] |
Altman E I, Haldeman R G, Narayanan P. ZETATM analysis A new model to identify bankruptcy risk of corporations[J]. Journal of banking & finance, 1977, 1(1): 29-54.
doi: 10.1016/0378-4266(77)90017-6
|
[5] |
Yurdakul M, Ic Y T. Development of a performance measurement model for manufacturing companies using the AHP and TOPSIS approaches[J]. International Journal of Production Research, 2005, 43(21): 4609-4641.
doi: 10.1080/00207540500161746
|
[6] |
Gu W, Basu M, Chao Z, et al. A unified framework for credit evaluation for internet finance companies: Multi-criteria analysis through AHP and DEA[J]. International Journal of Information Technology & Decision Making, 2017, 16(3): 597-624.
|
[7] |
Yang S, Islam M T. Principal Component Analysis and Factor Analysis for Feature Selection in Credit Rating[EB/OL].[2020-12-21]. https://arxiv.org/abs/2011.09137.
|
[8] |
Reichert A K, Cho C C, Wagner G M. An examination of the conceptual issues involved in developing credit-scoring models[J]. Journal of Business & Economic Statistics, 1983, 1(2): 101-114.
|
[9] |
Altman E I, Saunders A. Credit risk measurement: Developments over the last 20 years[J]. Journal of banking & finance, 1997, 21(11-12): 1721-1742.
doi: 10.1016/S0378-4266(97)00036-8
|
[10] |
Friedman J H. Multivariate adaptive regression splines[J]. The annals of statistics, 1991, 19(1): 1-67.
|
[11] |
Laitinen E K. Predicting a corporate credit analyst’s risk estimate by logistic and linear models[J]. International review of financial analysis, 1999, 8(2): 97-121.
doi: 10.1016/S1057-5219(99)00012-5
|
[12] |
West R C. A factor-analytic approach to bank condition[J]. Journal of Banking & Finance, 1985, 9(2): 253-266.
doi: 10.1016/0378-4266(85)90021-4
|
[13] |
Liang X, Chen S, Liu Y. The study of small enterprises credit evaluation based on incremental AntClust[C]. 2007 IEEE International Conference on Grey Systems and Intelligent Services, IEEE, 2007: 294-298.
|
[14] |
Shi B, Meng B, Yang H, et al. A novel approach for reducing attributes and its application to small enterprise financing ability evaluation[J]. Complexity, 2018, 2018: 1-17.
|
[15] |
Ic Y T, Yurdakul M. Development of a quick credibility scoring decision support system using fuzzy TOPSIS[J]. Expert Systems with Applications, 2010, 37(1): 567-574.
doi: 10.1016/j.eswa.2009.05.038
|
[16] |
Wang Y, Wang S, Lai K K. A new fuzzy support vector machine to evaluate credit risk[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(6): 820-831.
doi: 10.1109/TFUZZ.2005.859320
|
[17] |
Cao L, Guan L K, Jingqing Z. Bond rating using support vector machine[J]. Intelligent Data Analysis, 2006, 10(3): 285-296.
doi: 10.3233/IDA-2006-10307
|
[18] |
Lee Y C. Application of support vector machines to corporate credit rating prediction[J]. Expert Systems with Applications, 2007, 33(1): 67-74.
doi: 10.1016/j.eswa.2006.04.018
|
[19] |
Huang C L, Chen M C, Wang C J. Credit scoring with a data mining approach based on support vector machines[J]. Expert systems with applications, 2007, 33(4): 847-856.
doi: 10.1016/j.eswa.2006.07.007
|
[20] |
Zhu P, Hu Q. Rule extraction from support vector mach-ines based on consistent region covering reduction[J]. Knowledge-Based Systems, 2013, 42: 1-8.
doi: 10.1016/j.knosys.2012.12.003
|
[21] |
Maldonado S, Pérez J, Bravo C. Cost-based feature selection for support vector machines: An application in credit scoring[J]. European Journal of Operational Research, 2017, 261(2): 656-665.
doi: 10.1016/j.ejor.2017.02.037
|
[22] |
Gu T, Yang S. Duration prediction for truck crashes based on the XGBoost algorithm[M]. CICTP 2019, 2019: 5021-5031.
|
[23] |
Florez-Lopez R, Ramon-Jeronimo J M. Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal[J]. Expert Systems with Applications, 2015, 42(13): 5737-5753.
doi: 10.1016/j.eswa.2015.02.042
|
[24] |
Yeh C C, Lin F, Hsu C Y. A hybrid KMV model, random forests and rough set theory approach for credit rating[J]. Knowledge-Based Systems, 2012, 33: 166-172.
doi: 10.1016/j.knosys.2012.04.004
|
[25] |
Abellán J, Castellano J G. A comparative study on base classifiers in ensemble methods for credit scoring[J]. Expert systems with applications, 2017, 73: 1-10.
doi: 10.1016/j.eswa.2016.12.020
|
[26] |
Donate J P, Cortez P, Sanchez G G, et al. Time series forecasting using a weighted cross-validation evo-lutionary artificial neural network ensemble[J]. Neuro-computing, 2013, 109: 27-32.
|
[27] |
Yu L, Wang S, Lai K K. Credit risk assessment with a multistage neural network ensemble learning approach[J]. Expert systems with applications, 2008, 34(2): 1434-1444.
doi: 10.1016/j.eswa.2007.01.009
|
[28] |
He H, Zhang W, Zhang S. A novel ensemble method for credit scoring: Adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98: 105-117.
doi: 10.1016/j.eswa.2018.01.012
|
[29] |
Chornous G, Nikolskyi I. Business-oriented feature selection for hybrid classification model of credit scoring[C]. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), IEEE, 2018: 397-401.
|
[30] |
Wang M, Ku H. Utilizing historical data for corporate credit rating assessment[J]. Expert Systems with Appli-cations, 2021, 165: 113925.
|
[31] |
Chen Y S, Cheng C H. Hybrid models based on rough set classifiers for setting credit rating decision rules in the global banking industry[J]. Knowledge-Based Systems, 2013, 39: 224-239.
doi: 10.1016/j.knosys.2012.11.004
|
[32] |
Chai N, Wu B, Yang W, et al. A multicriteria approach for modeling small enterprise credit rating: evidence from China[J]. Emerging Markets Finance and Trade, 2019, 55(11): 2523-2543.
doi: 10.1080/1540496X.2019.1577237
|
[33] |
Chen B, Long S. A novel end-to-end corporate credit rating model based on self-attention mechanism[J]. IEEE Access, 2020, 8: 203876-203889.
doi: 10.1109/Access.6287639
|
[34] |
Golbayani P, Wang D, Florescu I. Application of deep neural networks to assess corporate credit rating[EB/OL]. [2020-3-4]. https://arxiv.org/abs/2003.02334.
|
[35] |
Brennan D, Brabazon A. Corporate Bond Rating Using Neural Networks[C]. IC-AI, 2004: 161-167.
|
[36] |
Angelini E, Di Tollo G, Roli A. A neural network approach for credit risk evaluation[J]. The quarterly review of economics and finance, 2008, 48(4): 733-755.
doi: 10.1016/j.qref.2007.04.001
|
[37] |
Choi J, Suh Y, Jung N. Predicting corporate credit rating based on qualitative information of MD&A transformed using document vectorization techniques[J]. Data Technologies and Applications, 2020, 54(2): 151-168.
doi: 10.1108/DTA-08-2019-0127
|
[38] |
Du Y. Enterprise credit rating based on genetic neural network[C]. MATEC Web of Conferences. EDP Sciences, 2018, 227: 02011.
|
[39] |
Luo C, Wu D, Wu D. A deep learning approach for credit scoring using credit default swaps[J]. Engineering Applications of Artificial Intelligence, 2017, 65: 465-470.
doi: 10.1016/j.engappai.2016.12.002
|
[40] |
Kim K S. Predicting bond ratings using publicly available information[J]. Expert Systems with Applications, 2005, 29(1): 75-81.
doi: 10.1016/j.eswa.2005.01.007
|
[41] |
Hájek P. Probabilistic Neural Networks for Credit Rating Modelling[C]. IJCCI (ICFC-ICNC), 2010: 289-294.
|
[42] |
Fu K, Cheng D, Tu Y, et al. Credit card fraud detection using convolutional neural networks[C]. International conference on neural information processing, Springer, Cham, 2016: 483-490.
|
[43] |
Rajaa S, Sahoo J K. Convolutional feature extraction and neural arithmetic logic units for stock prediction[C]. International Conference on Advances in Computing and Data Sciences, Springer, Singapore, 2019: 349-359.
|
[44] |
Dixon M, Klabjan D, Bang J H. Classificationbased fin-ancial markets prediction using deep neural networks[J]. Algorithmic Finance, 2017, 6(3-4): 67-77.
doi: 10.3233/AF-170176
|
[45] |
Feng B, Xue W, Xue B, et al. Every corporation owns its image: Corporate credit ratings via convolutional neural networks[C]. 2020 IEEE 6th International Conference on Computer and Communications (ICCC), IEEE, 2020: 1578-1583.
|
[46] |
Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2014-9-7]. https://arxiv.org/abs/1301.3781.
|
[47] |
Le Q, Mikolov T. Distributed representations of sentences and documents[C]. International conference on machine learning, PMLR, 2014: 1188-1196.
|
[48] |
Feng B, Xu H, Xue W, et al. Every corporation owns its structure: Corporate credit ratings via graph neural networks[EB/OL]. [2020-11-27]. https://arxiv.org/abs/2012.01933.
|
[49] |
Feng B, Xue W. Adversarial semi-supervised learning for corporate credit ratings[J]. The Journal of Software, 2021, 16(6): 259-266.
|
[50] |
Feng B, Xue W. Contrastive Pre-training for Imbalanced Corporate Credit Ratings[EB/OL]. [2022-2-23]. https://arxiv.org/abs/2102.12580.
|
[51] |
Plumb G, Molitor D, Talwalkar A S. Model agnostic supervised local explanations[J]. Advances in neural information processing systems, 2018, 31: 1-10.
|
[52] |
Wang D, Chen Z, Florescu I. A Sparsity Algorithm with Applications to Corporate Credit Rating[EB/OL]. [2021-7-21]. https://arxiv.org/abs/2107.10306.
|