[1] |
Xu G, Yu Z, Yao H, et al. Chinese text sentiment analysis based on extended sentiment dictionary[J]. IEEE Access, 2019, 7: 43749-43762.
doi: 10.1109/ACCESS.2019.2907772
|
[2] |
李婷婷, 姬东鸿. 基于 SVM 和 CRF 多特征组合的微博情感分析[J]. 计算机应用研究, 2015, 32(4): 978-981.
|
[3] |
Cai Y, Yang K, Huang D, et al. A hybrid model for opinion mining based on domain sentiment dictionary[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(8): 2131-2142.
doi: 10.1007/s13042-017-0757-6
|
[4] |
陈帆. 基于LSTM 情感分析模型的微博谣言识别方法研究[D]. 武汉: 华中师范大学, 2018
|
[5] |
梁军, 柴玉梅, 原慧斌, 等. 基于极性转移和 LSTM 递归网络的情感分析[J]. 中文信息学报, 2015, 29(5): 152-160.
|
[6] |
Shin J, Kim Y, Yoon S, et al. Contextual-CNN: A novel ar-chitecture capturing unified meaning for sentence classifica-tion[C]// 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), IEEE, 2018: 491-494.
|
[7] |
赵宏, 王乐, 王伟杰. 基于 BiLSTM-CNN 串行混合模型的文本情感分析[J]. 计算机应用, 2019, 40(1): 16-22.
|
[8] |
Lai S, Xu L, Liu K, et al. Recurrent convolutional neural networks for text classification[C]// Twenty-ninth AAAI conference on artificial intelligence, 2015: 2267-2273.
|
[9] |
Bahdanau D, Cho K, Bengio Y. Neural machine tran-slation by jointly learning to align and translate[EB/OL]. [2022-04-18]. https://arxiv.org/pdf/1409.0473v7.pdf.
|
[10] |
孙敏, 李旸, 庄正飞, 等. 基于并行混合网络融入注意力机制的情感分析[J]. 计算机应用, 2020, 40(9): 2543-2548.
doi: 10.11772/j.issn.1001-9081.2019112020
|
[11] |
祁瑞华, 简悦, 郭旭, 等. 融合特征与注意力的跨领域产品评论情感分析[J]. 数据分析与知识发现, 2020, 4(12): 85-94.
|
[12] |
胡艳丽, 童谭骞, 张啸宇, 等. 融入自注意力机制的深度学习情感分析方法[J]. 计算机科学, 2022, 49(1): 252-258.
doi: 10.11896/jsjkx.210600063
|
[13] |
Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understand-ing[EB/OL]. [2022-04-18]. https://arxiv.org/pdf/1810.04805.pdf.
|
[14] |
Lan Z, Chen M, Goodman S, et al. Albert: A lite bert for self-supervised learning of language represent -ations[EB/OL].[2022-04-18]. htps://arxiv.org/pdf/1909.11942v6.pdf.
|
[15] |
Sun Y, Wang S, Li Y, et al. Ernie: Enhanced repres-entation through knowledge integration[EB/OL].[2022-04-18]. https://arxiv.org/pdf/1904.09223.pdf.
|
[16] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Advances in neural information processing systems, 2017: 5998-6008.
|
[17] |
沈瑞琳, 潘伟民, 彭成, 等. 基于多任务学习的微博谣言检测方法[J]. 计算机工程与应用, 2021, 57(24): 192-197.
doi: 10.3778/j.issn.1002-8331.2007-0152
|
[18] |
余本功, 王惠灵, 朱晓洁. 基于BG-DATT-CNN网络的方面级别情感分析[J/OL]. 计算机工程与应用: 1-9 [2022-04-22]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210729.1314.004.html.
|
[19] |
Liu W, Zhou P, Zhao Z, et al. K-bert: Enabling language representation with knowledge graph[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3): 2901-2908.
|
[20] |
Lei T, Zhang Y, Artzi Y. Training rnns as fast as cnns 2018 [EB/OL].[2022-01-10]. https://arxiv.org/abs/1709.02755.
|
[21] |
张忠豪, 董方敏, 胡枫, 等. 基于残差的门控循环单元[J/OL]. 自动化学报: 1-10 [2022-04-18].DOI:10.16383/j.aas.c190591.
doi: 10.16383/j.aas.c190591
|
[22] |
Liu Y, Ott M, Goyal N, et al. Roberta: A robustly opti-mized bert pretraining approach[J]. arXiv preprint arXiv: 1907.11692, 2019.
|
[23] |
Zhang H, Wang J, Zhang J, et al. YNU-HPCC at SemEval 2017 task 4:using a multi-channel CNN-LSTM model for sentiment classification[C]// Proceedings of the 11th International Workshop on Semantic Evaluation (IWSE), 2017: 796-801.
|
[24] |
潘列, 曾诚, 张海丰, 等. 结合广义自回归预训练语言模型与循环卷积神经网络的文本情感分析方法[J]. 计算机应用, 2022, 42(04): 1108-1115.
|
[25] |
叶星鑫, 徐杨, 罗梦诗. 基于ALBERT-AFSFN的中文短文本情感分析[J/OL]. 计算机工程与应用: 1-11 [2021-08-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210331.1513.026.html.
|
[26] |
Xu B, Xu Y, Liang J, et al. CN-DBpedia: A never-ending Chinese knowledge extraction system[C]// International Conference on Industrial, Engineering and Other Appli-cations of Applied Intelligent Systems, Springer, Cham, 2017: 428-438.
|