[1] |
孙立山, 贾琳, 魏中华, 等. 基于GPS数据的出租车出行需求预测研究[J]. 交通信息与安全, 2021, 39(5): 128-136.
|
[2] |
周丰. 基于PageRank算法的出租车需求预测[J]. 微型电脑应用, 2019, 35(4): 8-11.
|
[3] |
路民超, 李建波, 逄俊杰, 等. 面向出租车需求预测的多因素时空图卷积网络[J]. 计算机工程与应用, 2020, 56(24): 266-273.
doi: 10.3778/j.issn.1002-8331.1910-0294
|
[4] |
Liu T, Wu W, Zhu Y, et al. Predicting taxi demands via an attention-based convolutional recurrent neural network[J]. Knowledge-Based Systems, 2020, 206: 106294.
doi: 10.1016/j.knosys.2020.106294
|
[5] |
Qiu Z, Liu L, Li G, et al. Taxi Origin-Destination Demand Prediction with Contextualized Spatial-Temporal Network[C]// 2019 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2019: 760-765.
|
[6] |
蔡延光, 乐冰, 蔡颢, 等. 暴雨天气下高速公路短时交通流预测[J]. 计算机工程, 2020, 46(6): 34-39.
doi: 10.19678/j.issn.1000-3428.0055520
|
[7] |
梁轲, 谭建军, 李英远. 一种基于MapReduce的短时交通流预测方法[J]. 计算机工程, 2015, 41(1): 174-179.
doi: 10.3969/j.issn.1000-3428.2015.01.032
|
[8] |
Wang M Z, Ai X H, et al. Traffic flow prediction model of BP neural network based on adaptive genetic algorithm optimization[J]. Advances in Applied Mathematics, 2020, 9(8): 1317-1326
doi: 10.12677/AAM.2020.98155
|
[9] |
李巍. 基于深度网络的出租车Pick-up需求预测[J]. 计算机与现代化, 2021, 37(2): 56-61.
|
[10] |
Xu J, Rahmatizadeh R, L Bölöni, et al. Real-Time pred-iction of taxi demand using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2572-2581.
doi: 10.1109/TITS.2017.2755684
|
[11] |
Moreira-Matias L, Gama J, Ferreira M, et al. On pred-icting the taxi-passenger demand: a real-time approach[C]// Portuguese Conference on Artificial Intelligence, Berlin Heidelberg, Springer, 2013: 54-65.
|
[12] |
Zhang C, Zhu F, Wang X, et al. Taxi demand prediction using parallel multi-task learning model[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, PP(99): 1-10.
|
[13] |
方晨晨, 周继彪, 董升, 等. 基于BP神经网络的地铁车厢拥挤度预测方法[J]. 交通信息与安全, 2018, 36(6): 47-53.
|
[14] |
李婷婷, 毕海权, 王宏林, 等. 基于BP神经网络的地铁站厅空调负荷预测[J]. 计算机科学, 2019, 46(S2): 590-594.
|
[15] |
颜权, 李春宁, 覃其云, 等. 基于灰色关联分析的马尾松采脂林土壤肥力评价[J]. 福建林业科技, 2021, 48(4): 62-66.
|
[16] |
张游国, 高岩. 基于灰色关联分析及多元回归的上海市电力需求预测[J]. 物流科技, 2021, 44(12): 26-29.
|
[17] |
吴金伟, 范铭灿. 基于灰色关联分析的无车承运人平台定价策略研究[J]. 物流工程与管理, 2021, 43(10): 1-3.
|
[18] |
Yu F, XU X Z. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134: 102-113.
doi: 10.1016/j.apenergy.2014.07.104
|
[19] |
Wang S X, Zhang N, Wu L, et al. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method[J]. Renewable Energy, 2016, 94: 629-636.
doi: 10.1016/j.renene.2016.03.103
|
[20] |
Bao-Hua Zheng. Material procedure quality forecast based on genetic BP neural network[J]. Modern Physics Letters B, 2017, 31: 19-21.
|
[21] |
雷文杰, 刘瑞涛, 苏国韶. 灰色关联优化BP神经网络预测工作面瓦斯涌出量[J]. 矿业安全与环保, 2013, 40(5): 34-37.
|
[22] |
YANG L, LI X X, MAO Z L. The parallelization of back propagation neural network in MapReduce and Spark[J]. International Journal of Parallel Progra-mming, 2017, 45(4): 760-779.
|
[23] |
Ge Yaru. Spark Parallel Optimization Algorithm gased on improved BP neural network[J]. Journal of Physics: Conference Series, 2020, 1550(3): 032044
doi: 10.1088/1742-6596/1550/3/032044
|
[24] |
崔萌. 长春市冬季居民出行方式选择影响因素研究[D]. 长春: 吉林建筑大学, 2020.
|
[25] |
林子敬. 恶劣天气对大连市居民出行方式选择的影响研究[D]. 大连: 大连理工大学, 2017.
|
[26] |
张琴. 大数据处理统一引擎Apache Spark研究[J]. 现代制造技术与装备, 2017, 53(8): 184-185.
|
[27] |
Zaharia M, Xin R S, Wendell P, et al. Apache Spark: a unified engine for big data processing[J]. Commun-ications of the Acm, 2016, 59(11): 56-65.
|
[28] |
亚达夫. Spark Cookbook中文版[M]. 北京: 人民邮电出版社, 2016: 19-22.
|
[29] |
林子雨. 大数据技术原理与应用[M]. 北京: 人民邮电出版社, 2017: 29-31.
|
[30] |
陈悦宁, 郭士增, 张佳岩, 等. 基于优化BP神经网络的水稻病害识别算法研究[J]. 电子技术应用, 2020, 46(9): 85-87.
|
[31] |
任圆圆. 粒子群优化BP神经网络算法在公路形变预测中的应用分析[J]. 电子测量技术, 2020, 43(12): 80-84.
|