[1] |
谢润忠, 李烨. 基于 BERT 和双通道注意力的文本情感分类模型[J]. 数据采集与处理, 2020, 35(4): 642-652.
|
[2] |
王婷, 杨文忠. 文本情感分析方法研究综述[J]. 计算机工程与应用, 2021, 57(12): 11-24.
doi: 10.3778/j.issn.1002-8331.2101-0022
|
[3] |
Pang B, Lee L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2): 1-135.
doi: 10.1561/1500000011
|
[4] |
赵妍妍, 秦兵, 石秋慧, 等. 大规模情感词典的构建及其在情感分类中的应用[J]. 中文信息学报, 2017, 31(2): 187-193
|
[5] |
Kiritchenko S, Zhu X, Cherry C, et al. Nrc-canada-2014: Detecting aspects and sentiment in customer reviews[C]. Proceedings of the 8th International Workshop on Se-mantic Evaluation (SemEval 2014), 2014: 437-442.
|
[6] |
Perikos I, Hatzilygeroudis I. Recognizing emotions in text using ensemble of classifiers[J]. Engineering Applications of Artificial Intelligence, 2016, 51: 191-201.
doi: 10.1016/j.engappai.2016.01.012
|
[7] |
Kiritchenko S, Zhu X, Mohammad S M. Sentiment analysis of short informal texts[J]. Journal of Artificial Intelligence Research, 2014, 50: 723-762.
doi: 10.1613/jair.4272
|
[8] |
Liujie Z, Yanquan Z, Xiuyu D, et al. A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews[J]. Iop Conference, 2018, 322: 062007.
|
[9] |
Sun X, Li C, Ren F. Sentiment analysis for Chinese microblog based on deep neural networks with convol-utional extension features[J]. Neurocomputing, 2016, 210: 227-236.
doi: 10.1016/j.neucom.2016.02.077
|
[10] |
Chen S, Ding Y, Xie Z, et al. Chinese Weibo sentiment analysis based on character embedding with dualchannel convolutional neural network[C]. 2018 IEEE 3rd Interna-tional Conference on Cloud Computing and Big Data Analysis, IEEE, 2018: 107-111.
|
[11] |
ZHAI P H, ZHANG D Y. Bidirectional-GRU based on attention mechanism for aspect-level sentiment ana-lysis[C]. Proceedings of the 2019 11th International Confer-ence on Machine Learning and Computing, 2019: 86-90.
|
[12] |
范涛, 王昊, 吴鹏. 基于图卷积神经网络和依存句法分析的网民负面情感分析研究[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
|
[13] |
Zou Y, Gui T, Zhang Q, et al. A lexicon-based supervised attention model for neural sentiment analysis[C]. Pro-ceedings of the 27th International Conference on Compu-tational Linguistics, 2018: 868-877.
|
[14] |
Yang X P, Zhang Z X, Wang L, et al. Automatic con-struction and optimization of sentiment lexicon based on Word2Vec[J]. Computer Science, 2017, 44(1): 42-47.
|
[15] |
Cambria E, Poria S, Hazarika D, et al. SenticNet 5: Dis-covering conceptual primitives for sentiment analysis by means of context embeddings[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1795-1802.
|
[16] |
曾春艳, 严康, 王志锋, 等. 深度学习模型可解释性研究综述[J]. 计算机工程与应用, 2021, 57(8): 1-9.
doi: 10.3778/j.issn.1002-8331.2012-0357
|
[17] |
Mikolov T, Sutskever I, Chen K, et al. Distributed repre-sentations of words and phrases and their compositi-onality[C]. Proceedings of the 26th International Con-ference on Neural Information Processing Systems-Volume 2, 2013: 3111-3119.
|
[18] |
Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-guage Processing, 2014: 1532-1543.
|
[19] |
方炯焜, 陈平华, 廖文雄. 结合GloVe和GRU的文本分类模型[J]. 计算机工程与应用, 2020, 56(20): 98-103.
doi: 10.3778/j.issn.1002-8331.2001-0272
|
[20] |
Ni R, Cao H. Sentiment Analysis based on GloVe and LSTM-GRU[C]. 2020 39th Chinese Control Conference (CCC), IEEE, 2020: 7492-7497.
|
[21] |
石隽锋, 李济洪, 王瑞波. 一种改进的GloVe词向量表示学习方法[J]. 中文信息学报, 2021, 35(4): 16-22.
|
[22] |
陈珍锐, 丁治明. 基于GloVe模型的词向量改进方法[J]. 计算机系统应用, 2019, 28(1): 194-199.
|
[23] |
Bahdanau D, Cho K, Bengio Y. Neural machine tran-slation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
|
[24] |
Liu L, Utiyama M, Finch A, et al. Neural Machine Translation with Supervised Attention[C]. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016: 3093-3102.
|
[25] |
Luca M, Zervas G. Fake it till you make it: Reputation, competition, and Yelp review fraud[J]. Management Science, 2016, 62(12): 3412-3427.
doi: 10.1287/mnsc.2015.2304
|
[26] |
Wang S I, Manning C D. Baselines and bigrams: Simple, good sentiment and topic classification[C]. Proceedings of the 50th Annual Meeting of the Association for Com-putational Linguistics (Volume 2:Short Papers), 2012: 90-94.
|
[27] |
Kim Y. Convolutional Neural Networks for Sentence Classification[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1746-1751.
|
[28] |
Kalchbrenner N, Grefenstette E, Blunsom P. A Convo-lutional Neural Network for Modelling Sentences[C]. Proceedings of the 52nd Annual Meeting of the Associ-ation for Computational Linguistics (Volume 1:Long Papers), 2014: 655-665.
|
[29] |
Zhou P, Qi Z, Zheng S, et al. Text Classification Im-proved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling[C]. Proceedings of COLING 2016, the 26th International Conference on Comp-utational Linguistics: Technical Papers, 2016: 3485-3495.
|
[30] |
Zhang Y, Liu Q, Song L. Sentence-State LSTM for Text Representation[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers), 2018: 317-327.
|
[31] |
Hasani R, Lechner M, Amini A, et al. Closed-form continuous-depth models[J]. arXiv preprint arXiv: 2106.13898, 2021.
|
[32] |
Wang J, Yu L C, Lai K R, et al. Dimensional sentiment analysis using a regional CNN-LSTM model[C]. Proc-eedings of the 54th Annual Meeting of the Association for Computational Linguistics (volume 2:Short papers), 2016: 225-230.
|
[33] |
袁和金, 张旭, 牛为华, 等. 融合注意力机制的多通道卷积与双向GRU模型的文本情感分析研究[J]. 中文信息学报, 2019, 33(10): 109-118.
|