数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (4): 101-111.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.04.009

doi: 10.11871/jfdc.issn.2096-742X.2023.04.009

• 技术与应用 • 上一篇    下一篇

融合情感词典和自注意力的双通道情感分析模型

巨家骥(),黄勃*(),张帅,郭茹燕   

  1. 上海工程技术大学,电子电气工程学院,上海 201620
  • 收稿日期:2022-02-28 出版日期:2023-08-20 发布日期:2023-08-23
  • 通讯作者: *黄勃(E-mail: huangbosues@sues.edu.cn
  • 作者简介:巨家骥,上海工程技术大学电子电气工程学院,硕士研究生,主要研究方向为自然语言处理、情感分析、推荐系统。
    本文中负责提供研究思路,对设计模型进行实验,论文撰写。
    JU Jiaji is a postgraduate student at the School of Electrical and Electronic Engineering, Shanghai University of Engineering and Technology. His main research interests are natural language processing, sentiment analysis, and recommendation systems.
    In this paper, he is responsible for proposing research ideas, conducting experiments on the designed model, and writing the paper.
    E-mail: 17621930036@163.com|黄勃,上海工程技术大学电子电气学院,副教授,硕士生导师,主要研究方向为软件工程、人工智能、大数据、自然语言处理等。
    本文中负责设计研究方案和框架,论文最终版本修订。
    HUANG Bo is currently an associate professor in the School of Electronic and Electrical Engineering, Shanghai University of Engineering Science. His main research interests include software engineering, artificial intelligence, big data, and natural language processing.
    In this paper, he is responsible for the design of the research protocol and framework and the revision of the final version of the paper.
    E-mail: huangbosues@sues.edu.cn
  • 基金资助:
    国家重点研发计划(2020AAA0109300);上海市科委科技创新行动计划(22S31903700);上海市科委科技创新行动计划(21S31904200)

A Dual-Channel Sentiment Analysis Model Integrating Sentiment Lexcion and Self-Attention

JU Jiaji(),HUANG Bo*(),ZHANG Shuai,GUO Ruyan   

  1. School of Electrical and Electronic Engineering, Shanghai University of Engineering and Technology, Shanghai 201620, China
  • Received:2022-02-28 Online:2023-08-20 Published:2023-08-23

摘要:

【应用背景】针对自然语言处理中的情感分析任务,目前的深度学习方法还是通过大量的数据训练来逐步提升效果,并没有充分利用文本中的情感词信息。【方法】本文提出了一种集成了情感词典和注意力机制的双通道文本情感分析模型。基于自注意力机制的通道负责提取语义特征,基于情感注意力的通道负责提取情感特征,两个通道分别提取的特征融合后获得文本最终的向量表达。同时引入一种注意力软约束来平衡两个通道中的注意力。【结果】实验结果表明,双通道的结构能够分别关注文本的不同特征,语义特征和情感特征结合起来有效提升了模型的分类性能。由于集成了情感词典,模型还具有较好的可解释性。【结论】本文提出的情感分析模型与相关模型相比拥有较好的性能和可解释性。

关键词: 深度学习, 情感词典, 文本情感分析, 双通道, 注意力

Abstract:

[Application Background] For the task of sentiment analysis in natural language processing, current deep learning methods are based on big data training to gradually improve the effect, and do not fully exploit the information of sentiment words in the text. [Methods] This paper proposes a dual-channel text sentiment analysis model that integrates sentiment lexicon and attention mechanism. The channel based on self-attention is responsible for extracting semantic features, and the channel based on emotional attention is to extract emotional features, and the features extracted by the two channels are fused to obtain the final vector representation of the text. A soft constraint of attention is also introduced to balance the attention in both channels. [Results] The experimental results show that the dual-channel structure can focus on different features of the text separately, and the combination of semantic and sentiment features significantly improves the sentiment classification performance of the model. The model also has better interpretability due to the integration of the sentiment lexicon. [Conclusions] The sentiment analysis model proposed in this paper has better performance and interpretability compared with related models.

Key words: deep learning, lexicon, text sentiment analysis, dual channel, attention