[1] |
BELLO-ORGAZ G, JUNG J J, CAMACHO D. Social big data: Recent achievements and new challenges[J/OL]. Information Fusion, 2016, 28: 45-59. DOI:10.1016/j.inffus.2015.08.005.
doi: 10.1016/j.inffus.2015.08.005
|
[2] |
PUJARA J, AUGUSTINE E, GETOOR L. Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short[C]// Proceedings of the 2017 Conference on Emp-irical Methods in Natural Language Processing, 2017: 1751-1756.
|
[3] |
BORDES A, USUNIER N, GARCIA-DURAN A. Tran-slating Embeddings for Modeling Multi-relational Data[C]// Advances in Neural Information Processing Sys-tems:Volume 26, Curran Associates, Inc., 2013: 1-9.
|
[4] |
NICKEL M, TRESP V, KRIEGEL H P. A Three-Way Model for Collective Learning on Multi-Relational Data[C]// ICML, 2011: 1-8.
|
[5] |
TROUILLON T, WELBL J, RIEDEL S. Complex Emb-eddings for Simple Link Prediction[C]// Proceedings of The 33rd International Conference on Machine Learning, PMLR, 2016: 2071-2080.
|
[6] |
LAO N, MITCHELL T, COHEN W W. Random Walk Inference and Learning in A Large Scale Knowledge Base[C]// Proceedings of the 2011 Conference on Empiri-cal Methods in Natural Language Processing. Edinburgh, Scotland, UK.: Association for Computational Lingui-stics, 2011: 529-539.
|
[7] |
NEELAKANTAN A, ROTH B, MCCALLUM A. Comp-ositional Vector Space Models for Knowledge Base Comp-letion[C/OL]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers), Beijing, China: Association for Computational Linguistics, 2015: 156-166. DOI:10.3115/v1/P15-1016.
doi: 10.3115/v1/P15-1016
|
[8] |
DAS R, NEELAKANTAN A, BELANGER D. Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, Valencia, Spain:Association for Computational Lingui-stics, 2017: 132-141.
|
[9] |
JIANG X, WANG Q, QI B. Attentive Path Combination for Knowledge Graph Completion[C]// Proceedings of the Ninth Asian Conference on Machine Learning, PMLR, 2017: 590-605.
|
[10] |
JAGVARAL B, LEE W K, ROH J S. Path-based reason-ing approach for knowledge graph completion using CNN-BiLSTM with attention mechanism[J/OL]. Expert Systems with Applications, 2020, 142: 112960. DOI: 10.1016/j.eswa.2019.112960.
doi: 10.1016/j.eswa.2019.112960
|
[11] |
Huang Z, Wei X, Kai Y. Bidirectional LSTM-CRF Mo-dels for Sequence Tagging[J]. Computer Science, 2015: 1-10. arXiv:1508.01991.
|
[12] |
JI S, PAN S, CAMBRIA E. A Survey on Knowledge Graphs: Representation, Acquisition and Applications[J/OL]. IEEE Transactions on Neural Networks and Lea-rning Systems, 2021: 1-21. DOI:10.1109/TNNLS.2021.3070843.
doi: 10.1109/TNNLS.2021.3070843
|
[13] |
WANG Q, MAO Z, WANG B. Knowledge Graph Emb-edding: A Survey of Approaches and Applications[J/OL]. IEEE Transactions on Knowledge and Data Engi-neering, 2017, 29(12): 2724-2743. DOI:10.1109/tkde.2017.2754499.
doi: 10.1109/tkde.2017.2754499
|
[14] |
BORDES A, WESTON J, COLLOBERT R. Learning Structured Embeddings of Knowledge Bases[C]// Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011: 301-306.
|
[15] |
WANG Z, ZHANG J, FENG J. Knowledge Graph Emb-edding by Translating on Hyperplanes[J]. Proceedings of the AAAI Conference on Artificial Intell-igence, 2014, 28(1):1112-1119.
|
[16] |
LIN Y, LIU Z, SUN M. Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]// Twenty-Ninth AAAI Conference on Artificial Intellige-nce, 2015: 2081-2187.
|
[17] |
JI G, HE S, XU L. Knowledge Graph Embedding via Dynamic Mapping Matrix[C/OL]// Proceedings of the 53rd Annual Meeting of the Association for Compu-tational Linguistics and the 7th International Joint Conf-erence on Natural Language Processing (Volume 1:Long Papers), Beijing, China: Association for Computational Linguistics, 2015: 687-696. DOI:10.3115/v1/P15-1067.
doi: 10.3115/v1/P15-1067
|
[18] |
SOCHER R, CHEN D, MANNING C D. Reasoning With Neural Tensor Networks for Knowledge Base Comp-letion[C]// Advances in Neural Information Processing Systems:Volume 26, Curran Associates, Inc., 2013: 1-10.
|
[19] |
YANG B, YIH W tau, HE X. Embedding Entities and Rel-ations for Learning and Inference in Knowledge Bases[J]. arXiv:1412.6575 [cs], 2015: 1-12.
|
[20] |
DETTMERS T, MINERVINI P, STENETORP P. Con-volutional 2D Knowledge Graph Embeddings[J]. Pro-ceedings of the AAAI Conference on Artificial Intelligen-ce, 2018, 32(1): 1811-1818.
|
[21] |
GARDNER M, TALUKDAR P P, KISIEL B. Improving Learning and Inference in a Large Knowledge-Base using Latent Syntactic Cues[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, Washington, USA: Association for Computational Linguistics, 2013: 833-838.
|
[22] |
GARDNER M, MITCHELL T. Efficient and Expressive Knowledge Base Completion Using Subgraph Feature Extraction[C/OL]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal: Association for Computational Ling-uistics, 2015: 1488-1498. DOI:10.18653/v1/D15-1173.
doi: 10.18653/v1/D15-1173
|
[23] |
WANG P, XU B, WU Y. Link prediction in social net-works: the state-of-the-art[J/OL]. Science China Infor-mation Sciences, 2015, 58(1): 1-38. DOI:10.1007/s11-432-014-5237-y.
doi: 10.1007/s11-432-014-5237-y
|
[24] |
Lan Y, He S, Liu K, et al. Path-based knowledge reaso-ning with textual semantic information for medical knowledge graph completion[J]. BMC Medical Inform-atics and Decision Making, 2021, 21(9): 1-12.
|
[25] |
TREISMAN A M. Strategies and models of selective atte-ntion[J/OL]. Psychol Rev, 1969, 76(3): 282-299. DOI: 10.1037/h0027242.
doi: 10.1037/h0027242
|
[26] |
BAHDANAU D, CHO K, BENGIO Y. Neural Machine Translation by Jointly Learning to Align and Translate[J/OL]. Computer Science, 2014: 1-15. DOI:10.48550/ar-Xiv.1409.0473.
doi: 10.48550/ar-Xiv.1409.0473
|
[27] |
YANG Z, YANG D, DYER C. Hierarchical Attention Networks for Document Classification[C/OL]. 2016: 1480-1489. DOI:10.18653/v1/N16-1174.
doi: 10.18653/v1/N16-1174
|
[28] |
TREISMAN A M. Selective Attention in Man[J/OL]. Br Med Bull, 1964, 20(1): 12-16. DOI:10.1093/oxfor-djournals.bmb.a070274.
doi: 10.1093/oxfor-djournals.bmb.a070274
|
[29] |
BOUCHARD G, SINGH S, TROUILLON T. On Appr-oximate Reasoning Capabilities of Low-Rank Vec-tor Spaces[C]// 2015 AAAI Spring Symposium Series, 2015: 6-9.
|
[30] |
KOK S, DOMINGOS P. Statistical predicate invention[C/OL]// Proceedings of the 24th international conference on Machine learning. New York, NY, USA: Association for Computing Machinery, 2007: 433-440. DOI: 10.1145/1273496.1273551.
doi: 10.1145/1273496.1273551
|
[31] |
XIONG W, HOANG T, WANG W Y. DeepPath: A Rein-forcement Learning Method for Knowledge Graph Rea-soning[C/OL]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark: Association for Computational Linguistics, 2017: 564-573. DOI:10.18653/v1/D17-1060.
doi: 10.18653/v1/D17-1060
|
[32] |
TOUTANOVA K, CHEN D, PANTEL P. Representing Text for Joint Embedding of Text and Knowledge Bases[C/OL]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portu-gal: Association for Computational Linguistics, 2015: 1499-1509. DOI:10.18653/v1/D15-1174.
doi: 10.18653/v1/D15-1174
|
[33] |
Das R, Dhuliawala S, Zaheer M, et al. Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Kno-wledge Bases using Reinforcement Learning[C]// Inter-national Conference on Learning Representations, 2018:1-18.
|
[34] |
杜会芳, 王昊奋, 史英慧, 王萌. 知识图谱多跳问答推理研究进展、挑战与展望[J]. 大数据, 2021, 7(03): 60-79.
|