| [1] | E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W.J.  Emery-SVM Active Learning Approach for Image Classification Using Spatial Information[J]. IEEE Transactions on Geos-cience and Remote Sensing. 2014, 52(4): 2217-2233. | 
																													
																						| [2] | S. Alim, G. Paolo, A. Jilili, S. Liu, and Z. Miao.  Geodesic flow kernel support vector machine for hyperspectral image classification by unsupervised subspace feature transfer[J]. Remote Sensing. 2016, 8(3):234. doi: 10.3390/rs8030234
 | 
																													
																						| [3] | P. Du, K. Tan, and X. Xing.  Wavelet SVM in Reproduc-ing Kernel Hilbert Space for hyperspectral remote sen-sing image classification[J]. Optics Communications, 2010, 283(24): 4978-4984. doi: 10.1016/j.optcom.2010.08.009
 | 
																													
																						| [4] | Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi. Deep fe-ature extraction and classification of hyperspectral ima-ges based on convolutional Lneural networks[J]. IE-EE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251. | 
																													
																						| [5] | Y. Li, H. Zhang, and Q. Shen. Spectral-spatial class-ification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67. doi: 10.3390/rs9010067
 | 
																													
																						| [6] | S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri.  HybridSN: Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geosc-ience and Remote Sensing Letters, 2020, 17(2): 277-281. | 
																													
																						| [7] | ZHONG Zilong, LI J, LUO Zhiming, et al.  Spectral-spatial residual network for hyperspectral image classi-fication: a 3-D deep learning framework[J]. IEEE tran-sactions on geoscience and remote sensing, 2018, 56(2): 847-858. | 
																													
																						| [8] | M. R. Haque, and S. Z. Mishu. Spectral-Spatial Feat-ure Extraction Using PCA and Multi-Scale Deep Convo-lutional Neural Network for Hyperspectral Image Class-ification[C]. 2019 22nd International Conference on Com-puter and Information Technology (ICCIT) IEEE, 2020: 468-471. | 
																													
																						| [9] | M. He, Bo. L, and H. Chen. Multi-scale 3D deep con-volutional neural network for hyperspectral image class-ification[C]. 2017 IEEE International Conference on Image Processing (ICIP) IEEE, 2018:342-346. | 
																													
																						| [10] | H. Yu, H. Zhang, Y. Liu, K. Zheng, Z. Xu, and C. Xiao.  Dual-channel convolution network with image-based global learning framework for hyperspectral image class-ification[J]. IEEE Geoscience and Remote Sensing Lett-ers, 2021, 9:1-5. | 
																													
																						| [11] | H. Lee and H. Kwon. Going Deeper with Contextual CNN for Hyperspectral Image Classification[J]. IEEE Trans Image Process. 2017, 26(10): 4843-4855. doi: 10.1109/TIP.2017.2725580
 | 
																													
																						| [12] | X. Cao, X. Fu, C. Xu, and D. Meng.  Deep SpatialSpe-ctral Global Reasoning Network for Hyperspectral Image noising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14. | 
																													
																						| [13] | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2018: 7132-7141. | 
																													
																						| [14] | W. Ma, Q. Yang, Y. Wu, W. Zhao, and X. Zhang. Dou-ble-branch multiattention mechanism network for hyper-spectral image classification[J]. Remote Sens, 2019, 11 (11):1307. doi: 10.3390/rs11111307
 | 
																													
																						| [15] | R. Li, S. Zheng, C. Duan, Y. Yang, and X. Wang. Class-ification of hyperspectral image based on double-bra-nch dual-attention mechanism network[J]. Remote Sensing, 2020, 12(3):582. doi: 10.3390/rs12030582
 | 
																													
																						| [16] | A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, and N. Houlsby.  An image is worth 16x16 words: trans-formers for image recognition at scale[J/OL]. 2020. https://doi.org/10.48550/arXiv.2010.11929. | 
																													
																						| [17] | D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot.  SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers[J/OL]. IEEE Transactions on Geoscience and Remote Sensing. 2021. https://doi.org/10.1109/TGRS.2021.3130716. | 
																													
																						| [18] | D. Hong et al.  SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers[J]. IEEE Tran-sactions on Geoscience and Remote Sensing, 2022, 60:1-15. | 
																													
																						| [19] | Z. Zhong, Y. Li, L. Ma, J. Li, and W. S. Zheng.  Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A Factorized Architecture Search Frame-work[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. |