数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (3): 138-151.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.03.010

doi: 10.11871/jfdc.issn.2096-742X.2023.03.010

• 技术与应用 • 上一篇    下一篇

结合Transformer和多层特征聚合的高光谱图像分类算法

陈栋1(),李明1,*(),陈淑文2   

  1. 1.重庆师范大学,计算机与信息科学学院,重庆 401331
    2.重庆师范大学,数学科学学院,重庆 401331
  • 收稿日期:2022-10-10 出版日期:2023-06-20 发布日期:2023-06-21
  • 通讯作者: *李明(E-mail: 20131052@cqnu.edu.com)
  • 作者简介:陈栋,重庆师范大学计算机与信息科学学院,硕士研究生,主要研究方向为深度学习、计算机视觉。
    本文中主要承担的任务是算法设计、实现与论文撰写。
    Chen Dong is a master’s student at the School of Computer and Information Science, Chongqing Normal University. His research interests include deep learning and computer vision.
    In this paper, he is mainly responsible for algorithm design, implementation, and paper writing.
    E-mail: 1593056183@qq.com|李明,重庆师范大学计算机与信息科学学院,博士,教授,硕士生导师,教育部高等学校电子商务类专业教学指导委员会委员,重庆市计算机学会常务理事,电子商务国家一流专业带头人。主要研究方向为计算机视觉、大数据与电子商务。
    本文中主要承担的任务是研究指导。
    Li Ming, Ph.D., is a full professor and master tutor at the School of Computer and Information Science, Chongqing Nor-mal University. He is also a member of the Teaching Steer-ing Committee of E-Commerce Specialty in Colleges and Univer-sities of the Ministry of Education. His main research interests include computer vision, big data, and e-commerce.
    In this paper, he is mainly responsible for research guidance.
    E-mail: 20131052@cqnu.edu.com
  • 基金资助:
    国家自然科学基金(61877051);国家自然科学基金(61170192);重庆市科委重点项目(cstc2017zdcy-zdyf0366);重庆市教委项目(113143);重庆市研究生教改重点项目(yjg182022)

Hyperspectral Image Classification Method Combining Transformer and Multi-Layer Feature Aggregation

CHEN Dong1(),LI Ming1,*(),CHEN Shuwen2   

  1. 1. College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China
    2. College of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
  • Received:2022-10-10 Online:2023-06-20 Published:2023-06-21

摘要:

【应用背景】 近年来,卷积神经网络被广泛应用在高光谱图像分类任务中,并获得了优异的分类性能。然而,卷积神经网络依然存在着较多的局限性。例如,卷积接受域较小、降采样操作会带来空间信息丢失等。【目的】 为了解决上述问题,本文提出了一种结合Transformer和多层特征聚合的高光谱图像分类方法(Transformer and Multi-Layer Feature Aggregation Network, TMFANet)。【方法】 首先,TMFANet采用二维卷积(2DConv)和三维卷积(3DConv)层提取图像的浅层空间光谱特征。接着,提出了一种基于密集卷积Transformer模块来提取图像的全局特征。然后,提出了一种多层特征聚合模块来提取不同层次的图像特征,最后将提取的抽象特征输送到分类器中进行分类。为了验证TMFANet的有效性,在Indian Pines、Pavia University和Salinas三个公开的数据集上进行了一系列实验。【结果】 实验结果表明,本文提出TMFANet的分类性能比其他先进的方法具有更为优异的性能和泛化能力。

关键词: 卷积神经网络, 图像处理, 高光谱图像分类, Transformer, 特征聚合

Abstract:

[Background] In recent years, the convolutional neural network has been widely used in hyper-spectral image classification tasks and achieved excellent classification performance. However, the convolutional neural network still has many limitations. For example, the convolution has a small receiving area and the downsampling operation will cause the loss of spatial information. [Objective] To solve the above problems, this paper proposes a hyperspectral image classification method that combines transformer and multi-layer feature aggregation (TMFANet). [Methods] First, TMFANet uses 3D CNN and 2D CNN layers to extract the shallow spatial-spectral features of the image. Then, a method based on the dense convolution Transformer module is proposed to extract the global features of images. Then, a multi-layer feature aggregation module is proposed to extract image features at different levels. Finally, the extracted abstract features are sent to a classifier for classification. To verify the effectiveness of TMFANet, a series of experiments are carried out on three public data sets, Indian pines, Pavia University and Salinas. [Results] The experimental results show that the classification performance of TMFANet proposed in this paper is better than other current methods.

Key words: Convolution neural network, Image processing, Hyperspectral image classification, Transformer, Characteristic aggr-egation