| [1] |
刘浩阳, 杨秀雷. 公安机关电子数据司法鉴定的现状与挑战[J]. 中国司法鉴定, 2022, 1: 54-59.
|
| [2] |
赵宪伟, 刘政, 徐衍. 海量电子数据审查的实现路径[J]. 中国司法鉴定, 2022, 1: 30-37.
|
| [3] |
SESTER J, HAYES D, SCANLON M, et al. A comparative study of support vector machine and neural networks for file type identification using n-gram an-alysis[J]. Forensic Science International: Digital Investigation, 2021, 36: 301121.
|
| [4] |
KARRESAND M, SHAHMEHRI N. Oscar - File type identification of binary data in disk clusters and RAM pages[C]// Proceedings of the 21st IFIP TC-11 International Information Security Conference, Boston, MA, US, 2006: 413-424.
|
| [5] |
KARRESAND M, SHAHMEHRI N. File type identification of data fragments by their binary structure[C]// Proceedings of the IEEE Information Assurance Wo-rkshop, Egham, Surrey, UK, 2006: 140-147.
|
| [6] |
AXELSSON S, BAJWA K A, SRIKANTH M V. File fragment analysis using normalized compression distance[C]// Proceedings of the 9th IFIP WG 11.9 International Conference on Digital Forensics, Orlando, FL, USA, 2013:171-182.
|
| [7] |
BEEBE N L, MADDOX L A, LIU L, et al. Sceadan: Using concatenated n-gram vectors for improved file and data type classification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(9): 1519-1530.
|
| [8] |
WANG F, QUACH T T, WHEELER J, et al. Sparse coding for n-gram feature extraction and training for file fragment classification[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(10): 25 53-2562.
|
| [9] |
MASOUMI M, KESHAVARZ A, FOTOHI R. File fragment recognition based on content and statistical features[J]. Multimedia Tools and Applications, 2021, 80: 18859-18874.
|
| [10] |
TEIMOURI M, SEYEDGHORBAN Z, AMIRJANI F. Fragments-Expert: A graphical user interface MATLAB toolbox for classification of file fragments[J]. Concurrency and Computation: Practice and Experience, 2021, 33(9): e6154.
|
| [11] |
XU T, XU M, REN Y, et al. A file fragment classification method based on grayscale image[J]. Journal of Computer, 2014, 9(8): 1863-1870.
|
| [12] |
江翀. 文件碎片类型的高效识别技术研究与实现[D]. 杭州电子科技大学, 2017.
|
| [13] |
ALSUBHI M A, MOUSSA A N, ALFAQIRI A S, et al. GenSpec: A file fragment classification approach[C]// Proceedings of the 23rd International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 2020: 1-5.
|
| [14] |
BHATT M, MISHRA A, KABIR M W U, et al. Hierarchy-based file fragment classification[J]. Machine Learning & Knowledge Extraction, 2021, 2: 216-232.
|
| [15] |
WANG Y, SU Z, SONG D. File fragment type identification with convolutional neural networks[C]// Proceedings of International Conference on Machine Le-arning Technologies, Jinan, China, 2018: 41-47.
|
| [16] |
CHEN Q, LIAO Q, JIANG Z L, et al. File fragment classification using grayscale image conversion and deep learning in digital forensics[C]// Proceedings of IEEE Security and Privacy Workshops, San Francisco, CA, USA, 2018: 140-147.
|
| [17] |
MITTAL G, KORUS P, MEMON N. FiFTy: large-scale file fragment type identification using convolutional neural networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 28-41.
|
| [18] |
SAAIM K M, FELEMBAN M, ALSALEH S, ALMULHEM A. Light-weight file fragments classification using depthwise separable convolutions[C]// Me-ng W, Fischer-Hübner S, Jensen C D (eds) ICT Systems Security and Privacy Protection. SEC 2022. IFIP Advances in Information and Communication Te-chnology, Springer, Cham, 2022, 648: 196-211.
|
| [19] |
ZHU N, LIU Y, WANG K, et al. File fragment type identification based on CNN and LSTM[C]// Proceedings of the 7th International Conference on Digital Signal Processing, Chengdu, China, 2023: 16-22.
|
| [20] |
WANG Y, WU K, LIU W, et al. Image representation and deep inception-attention for file-type and malware classification[C]// Proceedings of the 2023 IE-EE International Symposium on Circuits and Systems, Monterey, CA, USA, 2023: 1-5.
|
| [21] |
LIU W, WANG Y, WU K, et al. A byte sequence is worth an image: CNN for file fragment classification using bit shift and n-Gram embeddings[C]// Proceedings of the 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems, Hangzhou, China, 2023: 1-5.
|
| [22] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017: 1-11.
|
| [23] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]// Proceedings of the 9th International Conference on Learning Representati-ons, Virtual Event, Austria, 2021: 1-21.
|
| [24] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1-9.
|
| [25] |
MITTAL G, KORUS P, MEMON N. File Fragment Type (FFT)-75 Dataset[EB/OL]. 2022. http://dx.doi.org/10.21227/kfxw-8084.
|
| [26] |
ZHANG T, XU W, LUO B, et al. Depth-wise convolutions in vision Transformers for efficient training on small datasets[J]. Neurocomputing, 2025, 617: 128998.
|
| [27] |
ZHU J, LIU D, CHEN H, et al. DTSFormer: Decoupled temporal-spatial diffusion transformer for enhanced long-term time series forecasting[J] Knowledge Based Systems, 2025, 309: 112828.
|
| [28] |
DAI Y, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]// Proceedings of the IEEE/CVF Wi-nter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2021: 3560-3569.
|
| [29] |
WANG Y, WEI W. Local and global feature attention fusion network for face recognition[J]. Pattern Recognition, 2025, 161: 111227.
|