数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (5): 111-125.

CSTR: 32002.14.jfdc.CN10-1649/TP.2024.05.011

doi: 10.11871/jfdc.issn.2096-742X.2024.05.011

• • 上一篇    下一篇

基于弹性权重巩固的视频单曝光压缩成像算法研究

郑巳明1,2(),朱明宇3,袁鑫3,杨小渝1,2,*()   

  1. 1.中国科学院计算机网络信息中心,北京 100083
    2.中国科学院大学,北京 100049
    3.西湖大学工学院,浙江 杭州 310024
  • 收稿日期:2023-04-03 出版日期:2024-10-20 发布日期:2024-10-21
  • 通讯作者: * 杨小渝(E-mail: kxy@cnic.cn
  • 作者简介:郑巳明,博士生,就读于中国科学院计算机网络信息中心,专业方向为计算机应用技术,目前主要研究方向为深度学习、机器学习、计算成像,高光谱成像。
    本文负责论文初稿撰写,与模型设计。
    ZHENG Siming is pursuing a PhD degree (2017-present) at the Computer Network Information Center of the Chinese Academy of Sciences, specializing in Computer Application Technology. His research focuses mainly on deep learning, machine learning, computational imaging, and hyperspectral imaging.
    In this paper, he is responsible for the paper drafting and model design.
    E-mail: zsiming6@gmail.com|杨小渝,博士、英国剑桥大学博士后,中科院计算机网络信息中心研究员。中国科学院“百人计划”引进人才。目前主要研究方向为深度学习、机器学习、高通量材料集成计算、多尺度模拟计算、材料数据库、AI驱动的新材料研发、材料信息学等。
    本文参与制定论文框架,论文修改、审定。
    YANG Xiaoyu is a Ph.D. holder and a postdoctoral researcher from the University of Cambridge, UK. He is currently a researcher at the Computer Network Information Center of the Chinese Academy of Sciences, and has been selected as a member of the "Hundred Talents Program". His primary research interests include deep learning, machine learning, high-throughput material integrated computing, multiscale simulation computing, material databases, AI-driven new material research and development, material informatics, and related areas.
    In this paper, he participates in drawing up the paper framework, and paper revision and approval.
    E-mail: kxy@cnic.cn

Video Snapshot Compressive Imaging Based on Elastic Weight Consolidation

ZHENG Siming1,2(),ZHU Mingyu3,YUAN Xin3,YANG Xiaoyu1,2,*()   

  1. 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Department of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
  • Received:2023-04-03 Online:2024-10-20 Published:2024-10-21

摘要:

【目的】为视频单曝光压缩成像(Snapshot Compressive Imaging,SCI)设计一种对原始压缩比例、调制掩模和测量分辨率等超参数具有较高鲁棒性的统一模型。【方法】本文基于弹性权重巩固(EWC)对所提出的模型进行训练,该模型具有结合了Transformer和卷积神经网络两种网络结构的特殊设计,在此基础上本文在初始化阶段引入广义交替投影进一步增加了模型对于不同掩码的鲁棒性。【结果】广泛的实验结果表明,本文提出的统一模型可以很好地适应不同的压缩比、调制掩膜和测量分辨率,同时实现了最先进的结果。实验结果在PSNR、SSIM方面表现优于之前的SOTA算法,其中平均PSNR涨幅超过5 dB。【局限】尽管本文提出的模型在适应性和平均PSNR指标上优于之前的SOTA算法,但引入了EWC的模型在特定单一任务上的结果可能不会优于针对该特定任务训练的模型。【结论】通过引入广义交替投影和EWC以及对于网络结构的特殊设计,本文提出的具有高度适应性的模型为解决其他复杂场景下的压缩感知重建任务提供了新的思路和方法。

关键词: 单曝光压缩成像, 高光谱, 连续学习, Transformer, 3D卷积

Abstract:

[Objective] This work aims to design a unified model with high robust hyperparameters, including compression ratio, modulation mask and measurement resolution, for Snapshot Compressive Imaging (SCI). [Methods] We train the proposed model based on Elastic Weight Consolidation (EWC). The model is uniquely designed by combining Transformer and Convolutional neural network architectures. Additionally, during the initialization phase, we incorporate Generalized Alternating Projection to enhance the model's robustness to different masks. [Results] Extensive experimental results demonstrate that our proposed unified model can well adapt to different compression ratios, modulation masks, and measurement resolutions while achieving state-of-the-art results. Our model outperforms previous SOTA algorithms in terms of PSNR and SSIM, with an average PSNR improvement of over 5 dB. [Limitations] Although our model outperforms previous SOTA algorithms in terms of adaptability and average PSNR, the model with EWC may not perform better than a model specifically trained for a particular single task. [Conclusions] By introducing Generalized Alternating Projection and EWC, as well as the special design of the network structure, our proposed highly adaptive model provides new ideas and methods for solving compressive sensing reconstruction tasks in other complex scenarios.

Key words: snapshot compressive imaging, hyperspectral, continual learning, transformer, 3D convolution