[1] |
田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44(3): 401-424.
|
[2] |
POLAŃCZYK A, STRZELECKI M, WOŹNIAK T, et al. 3D blood vessels reconstruction based on segmented CT data for further simulations of hemodynamic in human artery branches[J]. Foundations of Computing and Decision Sciences, 2017, 42(4): 359-371.
doi: 10.1515/fcds-2017-0018
|
[3] |
曹玉红, 徐海, 刘荪傲, 等. 基于深度学习的医学影像分割研究综述[J]. 计算机应用, 2021, 41(8): 2273-2287.
doi: 10.11772/j.issn.1001-9081.2020101638
|
[4] |
施俊, 汪琳琳, 王珊珊, 等. 深度学习在医学影像中的应用综述[J]. 中国图象图形学报, 2020, 25(10): 1953-1981.
|
[5] |
王琮智, 许梓璧, 马祥园, 等. 基于数据扩增和迁移学习的Mask R-CNN脑CT图像自动分割研究[J]. 中国生物医学工程学报, 2021, 40(4): 410-418.
|
[6] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, USA: IEEE, 2015: 3431-3440.
|
[7] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer International Publishing, 2015: 234-241.
|
[8] |
XIAO X, LIAN S, LUO Z, et al. Weighted res-unet for high-quality retina vessel segmentation[C]// 2018 9th international conference on information technology in medicine and education (ITME), Zhejiang, China: IEEE, 2018: 327-331.
|
[9] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.
|
[10] |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 39(6): 1856-1867.
doi: 10.1109/TMI.42
|
[11] |
JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 2017-2025.
|
[12] |
SINHA A, DOLZ J. Multi-scale self-guided attention for medical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(1): 121-130.
doi: 10.1109/JBHI.6221020
|
[13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// 31st Conference on Neural Information Processing Systems(NIPS 2017), California, USA: Curran Associates, 2017: 5998-6008.
|
[14] |
CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021.
|
[15] |
CAO H, WANG Y, CHEN J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[C]// European conference on computer vision. Tel Aviv, Israel: Cham: Springer Nature Switzerland, 2022: 205-218.
|
[16] |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]// Proceedings of the IEEE/CVF international conference on computer vision, Montreal, Canada: IEEE, 2021: 10012-10022.
|
[17] |
LIANG J, CAO J, SUN G, et al. Swinir: Image restoration using swin transformer[C]// Proceedings of the IEEE/CVF international conference on computer vision, Montreal, Canada: IEEE, 2021: 1833-1844.
|
[18] |
LIN A, CHEN B, XU J, et al. Ds-transunet: Dual swin transformer u-net for medical image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15.
|
[19] |
LI J, CHEN N, ZHOU H, et al. MCRformer: Morphological Constraint Reticular Transformer for 3D Medical Image Segmentation[J]. Expert Systems with Applications, 2023: 120877.
|
[20] |
曾春艳, 严康, 王志锋, 等. 深度学习模型可解释性研究综述[J]. 计算机工程与应用, 2021, 57(8): 1-9.
doi: 10.3778/j.issn.1002-8331.2012-0357
|
[21] |
LOPEZ-PAZ D, NISHIHARA R, CHINTALA S, et al. Discovering causal signals in images[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, USA: IEEE, 2017: 6979-6987.
|
[22] |
LAKE B M, ULLMAN T D, TENENBAUM J B, et al. Building machines that learn and think like people[J]. Behavioral and Brain Sciences, 2017, 40: e253.
doi: 10.1017/S0140525X16001837
|
[23] |
KUANG K, XIONG R, CUI P, et al. Stable prediction with model misspecification and agnostic distribution shift[C]// Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA: AAAI, 2020, 34(04): 4485-4492.
|
[24] |
ZHANG X, CUI P, XU R, et al. Deep stable learning for out-of-distribution generalization[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, Canada: IEEE, 2021: 5372-5382.
|
[25] |
RAHIMI A, RECHT B. Random features for large-scale kernel machines[J]. Advances in Neural Information Processing Systems, 2007, 20: 1177-1184.
|
[26] |
TAKIKAWA T, ACUNA D, JAMPANI V, et al. Gated-scnn: Gated shape cnns for semantic segmentation[C]// Proceedings of the IEEE/CVF international conference on computer vision, Seoul, Korea: IEEE, 2019: 5229-5238.
|
[27] |
JHA A, KUMAR A, PANDE S, et al. MT-UNET: a novel U-Net based multi-task architecture for visual scene understanding[C]// 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates: IEEE, 2020: 2191-2195.
|