数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (2): 89-100.

CSTR: 32002.14.jfdc.CN10-1649/TP.2024.02.009

doi: 10.11871/jfdc.issn.2096-742X.2024.02.009

• 专刊:智慧医疗前沿与进展(上) • 上一篇    下一篇

基于因果约束的Transformer医学图像分割方法

郭冠辰1,2(),李军1,蔡程飞1,2,3,焦一平1,徐军1,*()   

  1. 1.南京信息工程大学,人工智能学院智慧医疗研究院,江苏 南京 210044
    2.南京信息工程大学,自动化学院,江苏 南京 210044
    3.泰州学院,信息工程学院,江苏 泰州 225300
  • 收稿日期:2023-10-30 出版日期:2024-04-20 发布日期:2024-04-26
  • 通讯作者: *徐军(E-mail: jxu@nuist.edu.cn
  • 作者简介:郭冠辰,南京信息工程大学自动化学院,硕士研究生,主要研究方向为医学图像计算。
    本文承担工作为文献的收集整理以及整体内容的撰写。
    GUO Guanchen is a master’s student in the School of Automation, Nanjing University of Information Science and Technology. His main research directions include medical image calculation.
    In this paper, he is responsible for collective literature reviews and thesis writing.
    E-mail: guoguanchen456@163.com|徐军,南京信息工程大学人工智能学院副院长,智慧医疗研究院执行院长,博士研究生导师,二级教授。主要研究方向为医学图像计算、计算病理、数字病理、疾病辅助诊疗和预后。
    本文承担的工作为整体规划和论文指导。
    XU Jun is the Vice Dean of the School of Artificial Intelligence and the Executive Director of the Institute of Smart Healthcare at Nanjing University of Information Science and Technology. He is a doctoral supervisor and holds the title of Professor at the second level. His primary research areas include medical image computing, computational pathology, digital pathology, disease-assisted diagnosis, and prognosis.
    In this paper, he is responsible for the overall planning and paper guidance.
    E-mail: jxu@nuist.edu.cn
  • 基金资助:
    国家自然科学基金(62171230);国家自然科学基金(62101365);国家自然科学基金(92159301);国家自然科学基金(91959207);国家自然科学基金(62301263);国家自然科学基金(62301265);国家自然科学基金(62302228);国家自然科学基金(82302291);国家自然科学基金(82302352)

Causal Restraint Transformer for Medical Image Segmentation

GUO Guanchen1,2(),LI Jun1,CAI Chengfei1,2,3,JIAO Yiping1,XU Jun1,*()   

  1. 1. Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
    2. School of Automation, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
    3. College of Information Engineering, Taizhou University, Taizhou, Jiangsu 225300, China
  • Received:2023-10-30 Online:2024-04-20 Published:2024-04-26

摘要:

【目的】数据分布对深度学习模型的性能影响较大。模型学习了与分割目标无关的特征后,这些无关特征通常不适用于新的数据集,从而导致模型泛化能力不足。【方法】为缓解这一问题,本文提出基于因果约束的Transformer医学图像分割方法。以MCRformer为网络主体,利用形态约束流模块提取形态约束先验信息,网状Transformer进一步提取局部信息和网络各层次信息,并加入因果约束模块降低目标区域相关特征和无关特征之间的相关性,通过形态先验和因果先验信息为模型选出具有代表性的特征,最终提高分割性能。【结果】在公开数据集Synapse上,Dice相关系数和Hausdorff距离的均值分别达到了80.01%和19.39 mm,在公开数据集ACDC上,Dice相关系数均值达到了90.95%,优于其他对比方法。【结论】实验证明,本文提出的方法可以有效提升CT和MRI中多器官的分割性能,并验证因果约束模块在不同模型上的有效性。

关键词: 医学图像分割, 形态约束, Transformer, 因果约束

Abstract:

[Purpose] The data distribution has a significant impact on the performance of deep learning models. However, deep models may learn features irrelevant to the segmentation target, which is usually inapplicable for new datasets, resulting in insufficient generalization ability. [Methods] To alleviate this problem, this paper proposes a Transformer-based medical image segmentation method with causal restraint. Taking MCRformer as the main body of the network, the Morphological Constraint Stream module is used to extract morphological constraint prior information. The meshed Transformer further extracts local and network-level information. The method introduces a Causal Restraint module to alleviate the correlation between features related to regions of interest (ROI) and irrelative features. Representative features are selected for the model through morphological and causal prior information, ultimately improving segmentation performance. [Results] On the public Synapse dataset, the Dice Similarity Coefficient and Hausdorff Distance achieved mean values of 80.01% and 19.39mm, respectively. On the public ACDC dataset, the mean DSC reached 90.95%, outperforming other comparative methods. [Conclusions] Experiment results demonstrate that the proposed method effectively enhances multi-organ segmentation performance on CT and MRI images and validates the feasibility of the causal restraint module across different models.

Key words: medical image segmentation, morphological constraint, Transformer, causal restraint