数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (2): 101-116.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.02.010
doi: 10.11871/jfdc.issn.2096-742X.2024.02.010
收稿日期:
2023-11-08
出版日期:
2024-04-20
发布日期:
2024-04-26
通讯作者:
*李晨(E-mail: 作者简介:
何睿琳,东北大学医学与生物信息工程学院生物医学工程专业本科生,主要研究方向为组织病理学图像分析,医学影像处理,计算机视觉领域。基金资助:
HE Ruilin1(),YANG Xinyi1,SUN Hongzan2,LI Chen1,*(
)
Received:
2023-11-08
Online:
2024-04-20
Published:
2024-04-26
摘要:
【目的】本文旨在综述最近五年人工智能在辅助组织病理学分析方面的研究进展,主要是图特征方法的应用、当前面临的问题以及未来的挑战。【方法】文章回顾了图论在组织病理学图像分析中的应用,包括图像分割、检测和分类。探讨了图像拓扑结构特征提取的各种图构建算法,例如经典的最小生成树算法及其衍生创新算法等,并分析了图卷积神经网络等网络结构的性能。【结果】通过结构图提取的图特征能够有效表示组织病理学图像中的拓扑信息,有助于实现精确的肿瘤分割、检测以及分类、分级等任务。此外,图特征方法综合全局与局部特征,提供了一种系统化的分析方式,促进了对复杂病理学图像的理解。【结论】图特征与先进的机器学习技术相结合在组织病理学图像分析中展现出强大的潜力,未来这些方法将被优化以提高临床诊断的准确性和效率。
何睿琳, 杨欣怡, 孙洪赞, 李晨. 基于图特征的组织病理学图像分析方法的最新发展情况与展望[J]. 数据与计算发展前沿, 2024, 6(2): 101-116.
HE Ruilin, YANG Xinyi, SUN Hongzan, LI Chen. The Latest Development and Prospects of Histopathological Image Analysis Methods Based on Graph Features[J]. Frontiers of Data and Computing, 2024, 6(2): 101-116, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.02.010.
表2
图方法在目标检测中的应用汇总"
任务 | 年份 | 文献 | 技术 | 结果评估 |
---|---|---|---|---|
细胞/细胞核检测 | 2021 | [ | 构建跨编码成对相似性的不同核组件的空间结构图 | 检测精确度:92.2% |
2023 | [ | 基于端到端图的核特征对齐(GNFA)方法 | 检测精确度:76.2% | |
2023 | [ | 基于GCN的像素分类器 | 检测精确度:73.4% | |
2023 | [ | 基于图的节点分类,利用局部细胞特征和全局组织结构进行上皮细胞检测 | F1-score:0.918 | |
病灶区域检测 | 2023 | [ | 基于图的稀疏主成分分析(GS-PCA)网络 | 检测精确度:95.1% |
2022 | [ | 基于位置感知图和深度散列(hash)技术,构造位置感知图(LA-Graphs) | 检索精确度:89.5% |
表3
图方法在图像分类中的应用汇总"
任务 | 年份 | 文献 | 方法 | 标签 | 结果评估 |
---|---|---|---|---|---|
二分类 | 2021 | [ | 结合CNN特征提取和GCN的图像关联学习 | 有监督 | 分类准确度:98.37% |
2022 | [ | 复合扩张的主干网络(composite dilated backbone network (CDBN)) | 有监督 | 分类准确度:94.00% | |
2023 | [ | CRCCN-Net分类网络模型 | 有监督 | 分类准确度:96.26% | |
2023 | [ | 自适应、可扩展的图卷积网络GraphLSurv | 有监督 | concordance-index:0.683,比其他方法提高了3.4% | |
2023 | [ | GARL-Net网络,深度神经网络DNN | 有监督 | 分类准确度:99.00% | |
2021 | [ | 支持向量机 (SVM) 和 K-Nearest Neighbour (KNN) 算法 | 有监督 | 分类准确度:98.00% | |
2022 | [ | GNN+二次谐波生成显微镜图像的胶原纤维形态学特征 | 有监督 | 分类准确度:96.20% | |
2023 | [ | 最小化细胞图(Minimized Cellular Graph,MCG) | 有监督 | 分类准确度:97.70% | |
2021 | [ | 手工特征(骨骼特征和晶格特征)绘制 | 有监督 | ||
2022 | [ | 深度学习模型特征和手工特征组合提取最佳的混合特征 | 有监督 | 分类准确度:91.00% | |
2022 | [ | 注意全局上下文图卷积神经网络(AGGCN) | 有监督 | 分类准确度:78.20% | |
2022 | [ | 深度特征图注意网络(DeepGAT) | 有监督 | 分类准确度:95.10% | |
2021 | [ | 改进对抗生成网络,NAS-SGAN网络 | 半监督 | 分类准确度:98.40% | |
2023 | [ | 异构图的框架和异构图边属性转换器HEAT | 伪标签 | 分类准确度:99.10% | |
2021 | [ | 基于空间解析的图卷积网络Patch-GCN | 弱监督 | 分类准确度:93.58% | |
2021 | [ | 图神经网络(GNN)+ 使用对比损失的自监督训练方法 | 无监督 | 分类准确度:86.00% | |
四分类 | 2023 | [ | 分形GCN网络融合到CNN框架中形成CNN-FGCN模型 | 有监督 | 分类准确度:95.77% |
五分类 | 2021 | [ | 基于多头注意力的多尺度图网络 | 有监督 | 分类准确度:71.00% |
四分类 | 2021 | [ | 高效网的迁移学习方法 | 有监督 | 分类准确度:98.33% |
七分类 | 2022 | [ | 图卷积神经网络 | 有监督 | 分类准确度:56.25% |
四分类 | 2022 | [ | 集成网络模型CNN-GCN | 有监督 | 分类准确度:94.44% |
八分类 | 2022 | [ | 依赖性的轻量级卷积神经网络(DBLCNN) | 有监督 | 分类准确度:99.54% |
七分类 | 2022 | [ | 新的层次实体图表示(HACT)和层次学习(HACT-Net)方法 | 有监督 | 分类准确度:83.79% |
三分类 | 2022 | [ | 层次变换图神经网络(HAT-Net+) | 无监督 | 分类准确度:98.00% |
三分类 | 2022 | [ | 最小生成树MST | 无监督 | 区分低中高密度区,并提取图特征 |
三分类 | 2023 | [ | 相关图注意网络(MLP-GAT) | 有监督 | 分类准确度:79.02% |
[1] | 近30年全球29种癌症的发生率及死亡率[J]. 实用肿瘤学杂志, 2021, 35(06): 561. |
[2] | MALIK N. R. Graph theory with applications to engineering and computer science[J]. in Proceedings of the IEEE, vol. 63, no. 10, pp. 1533-1534, Oct. 1975.doi: 10.1109/PROC.1975.9996. |
[3] | CHAKRABORTY M., CHOWDHURY S., CHAKRABO-RTY J, et al. Algorithms for generating all possible spanning trees of a simple undirected connected graph: an extensive review[J/OL]. Complex & Intelligent Systems, 2019, 5: 265-281. https://doi.org/10.1007/s40747-018-0079-7. |
[4] | ZHOU J, CUI G, HU S, et al. Graph neural networks: A review of methods and applications[J]. AI Open, vol. 1, pp. 57-81, 2020. doi: https://doi.org/10.1016/j.aiopen.2021.01.001. |
[5] | ZHANG S, TONG H, XU J, et al. Graph convolutional networks: a comprehensive review[J/OL]. Computational Social Networks, 2019, 6, 11. https://doi.org/10.1186/s40649-019-0069-y. |
[6] |
SCARSELLI F, GORI M, TSOI AC, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1) 61-80.
doi: 10.1109/TNN.2008.2005605 pmid: 19068426 |
[7] | RUIZ L, GAMA F, RIBEIRO A. Gated Graph Recurrent Neural Networks[J/OL]. in IEEE Transactions on Signal Processing, vol. 68, pp. 6303-6318, 2020.doi: 10.1109/TSP.2020.3033962. |
[8] | NAIR A, ARVIDSSON H, JORGE V, et al. A graph neural network framework for mapping histological topology in oral mucosal tissue[J]. BMC Bioinformatics, vol. 23, no. 1, Nov. 2022. doi: https://doi.org/10.1186/s12859-022-05063-5. |
[9] | HAN K, WANG Y, GUO J, et al. Vision GNN: An Image is Worth Graph of Nodes[EB/OL]. Advances in Neural Information Processing Systems, 2022 35: 8291-8303. https://proceedings.neurips.cc/paper_files/paper/2022/file/3743e69c8e47eb2e6d3afaea80e439fb-Paper-Conference.pdf.. |
[10] | GAO Z, SHI J, WANG J. GQ-GCN: Group quadratic graph convolutional network for classification of histopathological images[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VIII 24. Springer International Publishing, 2021: 121-131. |
[11] |
ABDLSAMEA M, ZIDAN U, SENOUSY Z, et al. A survey on artificial intelligence in histopathology image analysis[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12(6): e1474.
doi: 10.1002/widm.v12.6 |
[12] |
VISWANATHAN V S, TORO P, CORREDOR G, et al. The state of the art for artificial intelligence in lung digital pathology[J]. The Journal of Pathology, 2022, 257(4): 413-429.
doi: 10.1002/path.5966 pmid: 35579955 |
[13] |
PRABHU S, PRASAD K, ROBELS-KELLY A, et al. AI-based carcinoma detection and classification using histopathological images: A systematic review[J]. Computers in Biology and Medicine, 2022, 142: 105209.
doi: 10.1016/j.compbiomed.2022.105209 |
[14] |
WU Y, CHENG M, HUANG S, et al. Recent advances of deep learning for computational histopathology: principles and applications[J]. Cancers, 2022, 14(5): 1199.
doi: 10.3390/cancers14051199 |
[15] |
LINKON A H M, LABIB M M, HASAN T, et al. Deep learning in prostate cancer diagnosis and Gleason grading in histopathology images: An extensive study[J]. Informatics in Medicine Unlocked, 2021, 24: 100582.
doi: 10.1016/j.imu.2021.100582 |
[16] |
DE MATOS J, ATAKY S T M, DE SOUZA BRITTO J A, et al. Machine learning methods for histopathological image analysis: A review[J]. Electronics, 2021, 10(5): 562.
doi: 10.3390/electronics10050562 |
[17] | AI S, LI C, LI X, et al. A state-of-the-art review for gastric histopathology image analysis approaches and future development[J/OL]. BioMed Research International, 2021: 6671417. doi: 10.1155/2021/6671417. |
[18] | LIM S, JUNG S W. A Comparative Study on Graph Construction Methods for Survival Prediction using Histopathology Images[C]// 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), IEEE, 2022: 1-4. |
[19] |
LI M M, HUANG K, ZITNIK M. Graph representation learning in biomedicine and healthcare[J]. Nature Biomedical Engineering, 2022, 6(12): 1353-1369.
doi: 10.1038/s41551-022-00942-x pmid: 36316368 |
[20] | XIA M, HE Y. Magnetic Resonance Imaging and Graph Theoretical Analysis of Complex Brain Networks in Neuropsychiatric Disorders[J/OL]. Brain Connectivity, vol. 1, no. 5, pp. 349-365, Dec. 2011. doi: https://doi.org/10.1089/brain.2011.0062. |
[21] | ZHOU Y, YU F, DUONG T. Multiparametric MRI Characterization and Prediction in Autism Spectrum Disorder Using Graph Theory and Machine Learning[J/OL]. PLoS ONE, vol. 9, no. 6, p. e90405, Jun. 2014. doi: https://doi.org/10.1371/journal.pone.0090405. |
[22] | SHAHABAZ, SOMWANSHI D, YADAV A, et al. Medical images texture analysis: A review[C]. 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India, 2017, pp. 436-441. doi: 10.1109/COMPTELIX.2017.8004009 [2017-08-10]. |
[23] | FAYAZ M, SHAH A, WAHID F, et al. A Robust Technique of Brain MRI Classification using Color Features and K-Nearest Neighbors Algorithm[J/OL]. International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 9, no. 10, pp. 11-20, Oct. 2016. doi: https://doi.org/10.14257/ijsip.2016.9.10.02. |
[24] | ASODEKAR B, GORE S, THAKARE A. Brain Tumor analysis Based on Shape Features of MRI using Machine Learning[C]. 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA), Pune, India, 2019, pp. 1-5. doi: 10.1109/ICCUBEA47591.2019.9129512. |
[25] | HE P, QU A, XIAO S, et al. A GNN-based Network for Tissue Semantic Segmentation in Histopathology Image[C]// Journal of Physics: Conference Series, IOP Publishing, 2023, 2504(1): 012047. |
[26] |
SHI T, LI C, XU D, et al. Fine-grained histopathological cell segmentation through residual attention with prior embedding[J]. Multimedia Tools and Applications, 2022, 81(5): 6497-6511.
doi: 10.1007/s11042-021-11835-7 |
[27] | DAMANIA K, ANGEL ARUL J. Graph Convolutional Neural Networks for Nuclei Segmentation from Histopathology Images[C]// International Conference on Soft Computing and its Engineering Applications, Cham: Springer Nature Switzerland, 2022: 158-169. |
[28] | ANKLIN V, PATI P, JAUME G, et al. Learning whole-slide segmentation from inexact and incomplete labels using tissue graphs[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part II 24, Springer International Publishing, 2021: 636-646. |
[29] |
ZHENG Y, JIANG Z, SHI J, et al. Encoding histopathology whole slide images with location-aware graphs for diagnostically relevant regions retrieval[J]. Medical image analysis, 2022, 76: 102308.
doi: 10.1016/j.media.2021.102308 |
[30] |
RAM S, TANG W, BELL A, et al. Lung cancer lesion detection in histopathology images using graph-based sparse PCA network[J]. Neoplasia, 2023, 42: 100911.
doi: 10.1016/j.neo.2023.100911 |
[31] | OZEN Y, AKSOY S, Kösemehmetoğlu K, et al. Self-supervised learning with graph neural networks for region of interest retrieval in histopathology[C]// 2020 25th International conference on pattern recognition (ICPR), IEEE, 2021: 6329-6334. |
[32] |
JAVED S, MAHMOOD A, DIAS J, et al. Spatially constrained context-aware hierarchical deep correlation filters for nucleus detection in histology images[J]. Medical Image Analysis, 2021, 72: 102104.
doi: 10.1016/j.media.2021.102104 |
[33] | WANG Z, FAN K, ZHU X, et al. Cross-domain Nuclei Detection in Histopathology Images using Graph-based Nuclei Feature Alignment[J/OL]. IEEE Journal of Biomedical and Health Informatics, 2023. doi: 10.1109/JBHI.2023.3280958. |
[34] | BAHADE S, EDWARDS M, XIE X. Cascaded Graph Convolution Approach for Nuclei Detection in Histopathology Images[J]. Journal of Image and Graphics, 2023, 11(1). |
[35] | FREI A, KHAN A, STUDER L, et al. Local and global feature aggregation for accurate epithelial cell classification using graph attention mechanisms in histopathology images[C]// Medical Imaging with Deep Learning, short paper track, 2023[2023-08-04]. |
[36] |
HASSAN T, JAVED S, MAHMOOD A, et al. Nucleus classification in histology images using message passing network[J]. Medical Image Analysis, 2022, 79: 102480.
doi: 10.1016/j.media.2022.102480 |
[37] |
SHI J, WANG R, ZHENG Y, et al. Cervical cell classification with graph convolutional network[J]. Computer Methods and Programs in Biomedicine, 2021, 198: 105807.
doi: 10.1016/j.cmpb.2020.105807 |
[38] | MOHANAKURUP V, PARAMBIL G, GOEL P, et al. Breast cancer detection on histopathological images using a composite dilated Backbone Network[J/OL]. Computational Intelligence and Neuroscience, 2022: 8517706. doi: 10.1155/2022/8517706. |
[39] |
KUMAR A, VISHWAKARMA A, BAJAJ V. CRCCN-Net: Automated framework for classification of colorectal tissue using histopathological images[J]. Biomedical Signal Processing and Control, 2023, 79: 104172.
doi: 10.1016/j.bspc.2022.104172 |
[40] |
LIU P, JI L, YE F, et al. GraphLSurv: A scalable survival prediction network with adaptive and sparse structure learning for histopathological whole-slide images[J]. Computer Methods and Programs in Biomedicine, 2023, 231: 107433.
doi: 10.1016/j.cmpb.2023.107433 |
[41] |
DING S, GAO Z, WANG J, et al. Fractal graph convolutional network with MLP-mixer based multi-path feature fusion for classification of histopathological images[J]. Expert Systems with Applications, 2023, 212: 118793.
doi: 10.1016/j.eswa.2022.118793 |
[42] |
PATEL V, CHAURASIA V, MAHADEVA R, et al. GARL-Net: Graph Based Adaptive Regularized Learning Deep Network for Breast Cancer Classification[J]. IEEE Access, 2023, 11: 9095-9112.
doi: 10.1109/ACCESS.2023.3239671 |
[43] | BAKARE Y, KUMARASAMY M. Histopathological image analysis for oral cancer classification by support vector machine[J]. International journal of advances in signal and image sciences, 2021, 7(2): 1-10. |
[44] |
LI B, NELSON M, SAVARI O, et al. Differentiation of pancreatic ductal adenocarcinoma and chronic pancreatitis using graph neural networks on histopathology and collagen fiber features[J]. Journal of Pathology Informatics, 2022, 13: 100158.
doi: 10.1016/j.jpi.2022.100158 |
[45] | SAHA P, DAS P, NATH N, et al. Estimation of Abnormal Cell Growth and MCG-Based Discriminative Feature Analysis of Histopathological Breast Images[J/OL]. International Journal of Intelligent Systems, 2023. 10.1155/2023/6318127. |
[46] | PATI P. JAUME G, FERNANDES L. et al. HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification[C]. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. UNSURE GRAIL 2020. Lecture Notes in Computer Science, vol 12443. Springer, Cham. https://doi.org/10.1007/978-3-030-60365-6_20. |
[47] | XIAO R, DEBREUVE E, AMBROSETTI D, et al. Renal cell carcinoma classification from vascular morphology[C]. Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VI 24. Springer International Publishing, 2021: 611-621. |
[48] | SNIGDHA V, NAIR L S. Hybrid feature-based invasive ductal carcinoma classification in breast histopathology images[M]. Machine Learning and Autonomous Systems:Proceedings of ICMLAS 2021, Singapore: Springer Nature Singapore, 2022: 515-525. |
[49] |
MAHMOOD T, KIM S G, KOO J H, et al. Artificial intelligence-based tissue phenotyping in colorectal cancer histopathology using visual and semantic features aggregation[J]. Mathematics, 2022, 10(11): 1909.
doi: 10.3390/math10111909 |
[50] | LEE Y, PARK J H, OH S, et al. Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning[J]. Nature Biomedical Engineering, 2022: 1-15. |
[51] | REISENBÜCHLER D, WAGNER S J, BOXBERG M, et al. Local attention graph-based transformer for multi-target genetic alteration prediction[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer Nature Switzerland, 2022: 377-386. |
[52] | ZHANG H, MENG Y, ZHAO Y, et al. DTFD-MIL: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18802-18812. |
[53] |
BARANWAL M, KRISHNAN S, ONEKA M, et al. Cgat: Cell graph attention network for grading of pancreatic disease histology images[J]. Frontiers in Immunology, 2021, 12: 727610.
doi: 10.3389/fimmu.2021.727610 |
[54] |
SU R, HE H, SUN C, et al. Prediction of drug-induced hepatotoxicity based on histopathological whole slide images[J]. Methods, 2023, 212: 31-38.
doi: 10.1016/j.ymeth.2023.01.005 pmid: 36706825 |
[55] | CONG C, YANG Y, LIU S, et al. Imbalanced Histopathology Image Classification Using Deep Feature Graph Attention Network[C]// 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), IEEE, 2022: 1-4. |
[56] |
DAS A, DEVARAMPATI V K, NAIR M S. NAS-SGAN: a semi-supervised generative adversarial network model for atypia scoring of breast cancer histopathological images[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(5): 2276-2287.
doi: 10.1109/JBHI.2021.3131103 |
[57] | SHI J, TANG L, LI Y, et al. A Structure-aware Hierarchical Graph-based Multiple Instance Learning Framework for pT Staging in Histopathological Image[J]. IEEE Transactions on Medical Imaging. vol. 42, no. 10, pp. 3000-3011, Oct. 2023. doi: 10.1109/TMI.2023.3273236. |
[58] | CHAN T H, CENDRA F J, MA L, et al. Histopathology Whole Slide Image Analysis With Heterogeneous Graph Representation Learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 15661-15670. |
[59] | CHEN R J, LU M Y, SHABAN M, et al. Whole slide images are 2d point clouds: Context-aware survival prediction using patch-based graph convolutional networks[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021:24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VIII 24, Springer International Publishing, 2021: 339-349. |
[60] |
LEE J, WARNER E, SHAIKHOUNI S, et al. Clustering-based spatial analysis (CluSA) framework through graph neural network for chronic kidney disease prediction using histopathology images[J]. Scientific Reports, 2023, 13(1): 12701.
doi: 10.1038/s41598-023-39591-8 pmid: 37543648 |
[61] | DIAO S, LUO W, HOU J. Deep Multi-Magnification Similarity Learning for Histopathological Image Classification[J]. IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 3, pp. 1535-1545. Mar. 2023. doi: https://doi.org/10.1109/jbhi.2023.3237137. |
[62] | DI D, ZOU C, FENG Y, et al. Generating hypergraph-based high-order representations of whole-slide histopathological images for survival prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 5800-5815. |
[63] |
LU C, KOYUNCU C, CORREDOR G, et al. Feature-driven local cell graph (FLocK): new computational pathology-based descriptors for prognosis of lung cancer and HPV status of oropharyngeal cancers[J]. Medical image analysis, 2021, 68: 101903.
doi: 10.1016/j.media.2020.101903 |
[64] |
SAEDNIA K, LAGREE A, ALERA M A, et al. Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies[J]. Scientific Reports, 2022, 12(1): 9690.
doi: 10.1038/s41598-022-13917-4 pmid: 35690630 |
[65] |
DING K, ZHOU M, WANG H, et al. Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study[J]. The Lancet Digital Health, 2022, 4(11): e787-e795.
doi: 10.1016/S2589-7500(22)00168-6 |
[66] |
ALTINI N, PURO E, TACCOGNA M G, et al. Tumor Cellularity Assessment of Breast Histopathological Slides via Instance Segmentation and Pathomic Features Explainability[J]. Bioengineering, 2023, 10(4): 396.
doi: 10.3390/bioengineering10040396 |
[67] |
HOWARD F M, DOLEZAL J, KOCHANNY S, et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias[J]. Nature communications, 2021, 12(1): 4423.
doi: 10.1038/s41467-021-24698-1 pmid: 34285218 |
[68] | XING X, MA Y, JIN L, et al. A Multi-scale Graph Network with Multi-head Attention for Histopathology Image Diagnosis[C]// COMPAY 2021:The third MICCAI workshop on Computational Pathology, 2021, 156: 227-235. |
[69] | MUNIEN C, VIRIRI S. Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets[J/OL]. Computational Intelligence and Neuroscience, 2021: 5580914. doi: 10.1155/2021/5580914. |
[70] | TEPE E, BILGIN G. Classification of Tissue Types in Histology Images Using Graph Convolutional Networks[C]// 2022 10th International Symposium on Digital Forensics and Security (ISDFS), IEEE, 2022: 1-3. |
[71] | DE A, MHATRE R, TIWARI M, et al. Brain Tumor Classification from Radiology and Histopathology using Deep Features and Graph Convolutional Network[C]// 2022 26th International Conference on Pattern Recognition (ICPR), IEEE, 2022: 4420-4426. |
[72] |
GAO Z, LU Z, WANG J, et al. A convolutional neural network and graph convolutional network based framework for classification of breast histopathological images[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(7): 3163-3173.
doi: 10.1109/JBHI.2022.3153671 |
[73] | DWIVEDI C, NOFALLAH S, POURYAHYA M, et al. Multi stain graph fusion for multimodal integration in pathology[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1835-1845. |
[74] |
WANG C, GONG W, CHENG J, et al. DBLCNN: Dependency-based lightweight convolutional neural network for multi-classification of breast histopathology images[J]. Biomedical Signal Processing and Control, 2022, 73: 103451.
doi: 10.1016/j.bspc.2021.103451 |
[75] | CHEN H, WANG K, ZHU Y, et al. From pixel to whole slide: Automatic detection of microvascular invasion in hepatocellular carcinoma on histopathological image via cascaded networks[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VIII 24, Springer International Publishing, 2021: 196-205. |
[76] |
PATI P, JAUME G, FONCUBIERTA-RODRIGUEZ A, et al. Hierarchical graph representations in digital pathology[J]. Medical image analysis, 2022, 75: 102264.
doi: 10.1016/j.media.2021.102264 |
[77] |
BAI Y, MI Y, SU Y, et al. A scalable graph-based framework for multi-organ histology image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5506-5517.
doi: 10.1109/JBHI.2022.3199110 |
[78] |
PEREGRINA-BARRETO H, RAMIREZ-GUATEMALA V Y, LOPEZ-ARMAS G C, et al. Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer[J]. Sensors, 2022, 22(15): 5649.
doi: 10.3390/s22155649 |
[79] | YANG X, SHANG L, HE R, et al. Clustering of Cervical Histopathology Images Based on Minimum Spanning Tree[C]// International Conference on Image, Vision and Intelligent Systems. Singapore: Springer Nature Singapore, 2022: 92-101. |
[80] | LIU L, WANG Y, CHANG J, et al. A correlation graph attention network for classifying chromosomal instabilities from histopathology whole-slide images[J]. iScience, 2023, 26(6).[2022-11-15]. |
[81] | REN J, RAJBHANDARI S, AMINABADI R Y, et al. ZeRO-Offload: Democratizing Billion-Scale model training[C]// 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021: 551-564. |
[82] | RASLEY J, RAjBHANDARI S, RUWASE O, et al. Deepspeed: System optimizations enables training deep learning models with over 1000an parameters[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 3505-3506. |
[1] | 叶旭, 杜一, 崔文娟, 沈俊杰, 谢靖, 王露笛. 机器学习技术在眼健康领域的应用[J]. 数据与计算发展前沿, 2024, 6(2): 117-133. |
[2] | 申志豪, 李娜, 尹世豪, 杜一, 胡良霖. 基于TPA-Transformer的机票价格预测[J]. 数据与计算发展前沿, 2023, 5(6): 115-125. |
[3] | 危婷, 彭亮, 牛铁, 张宏海. 基于特征分析的HPC失败作业的检测和根因分析[J]. 数据与计算发展前沿, 2023, 5(6): 94-103. |
[4] | 孙一帆, 张锐, 陶杨, 高碧柔, 秦诗涵, 安超. 本地化差分隐私综述[J]. 数据与计算发展前沿, 2023, 5(5): 74-97. |
[5] | 田一擎, 程曦, 冯博靖. 企业信用评级计算模型综述[J]. 数据与计算发展前沿, 2023, 5(4): 139-153. |
[6] | 陈美霖, 刘端阳, 徐黎明, 汪洋. 基于机器学习的力场模型研究综述[J]. 数据与计算发展前沿, 2023, 5(4): 27-37. |
[7] | 刘端阳, 魏钟鸣. 有监督学习算法在材料科学中的应用[J]. 数据与计算发展前沿, 2023, 5(4): 38-47. |
[8] | 朱明明, 曹无敌, 吴林, 王自溪, 廖琦, 张思, 唐晓, 李杰, 王婧, 王彦棡, 王自发. 基于人工智能与大数据的双碳大气环境信息化应用进展与展望[J]. 数据与计算发展前沿, 2023, 5(3): 2-12. |
[9] | 李妍,何洪波,王闰强. 微博热度预测研究综述[J]. 数据与计算发展前沿, 2023, 5(2): 119-135. |
[10] | 胡晓彦,徐寄遥,邹自明. “大数据&人工智能”驱动的空间天气科研范式变革初步探索[J]. 数据与计算发展前沿, 2023, 5(2): 24-36. |
[11] | 齐法制,李刚,李纯,汪璐,张一,张正德,陈刚,罗武鸣,赵丽娜,胡誉,袁野. 基于人工智能的高能物理大数据技术与应用[J]. 数据与计算发展前沿, 2023, 5(2): 50-59. |
[12] | 高添,朱教君,张金鑫,孙一荣,于丰源,滕德雄,卢德亮,于立忠,王宗国. 基于新一代信息技术的温带森林生态系统碳通量精准计量[J]. 数据与计算发展前沿, 2023, 5(2): 60-72. |
[13] | 王凡,冯立强,曹荣强. 大数据驱动的海洋人工智能服务平台设计与应用[J]. 数据与计算发展前沿, 2023, 5(2): 73-85. |
[14] | 王宗国,万萌,陈子逸,李凯,王晓光,刘淼,孟胜,王彦棡. 数据驱动的材料智能设计平台研究与应用[J]. 数据与计算发展前沿, 2023, 5(2): 86-96. |
[15] | 刘嘉琪,杨斌艳. 我国人工智能与社会科学耦合发展的热点与趋势研究——基于CiteSpace的文献计量分析[J]. 数据与计算发展前沿, 2022, 4(6): 77-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||