[1] |
TARUQ I, MENG Q, YAO S Y, et al. Adaboost-DSNN: an adaptive boosting algorithm basedon deep self normalized neural network for pulsar identification[J]. Monthly Noticesof the Royal Astronomical Society, 2022, 511(1): 683-690.
|
[2] |
YANG W Z, YUAN T T, WANG L J. Micro-Blog Sentiment Classification Method Based on the Personality and Bagging Algorithm[J]. Future Internet, 2020, 12(4): 75-75.
|
[3] |
TANG J J, LIANG J, HAN C Y, et al. Crash injury severity analysis using a two-layer Stacking framework[J]. Accident Analysis and Prevention, 2019, 122: 226-238.
|
[4] |
曹维凡. 基于Boosting算法的股票量化多因子选股研究[D]. 杭州: 浙江工商大学, 2021.
|
[5] |
WANG L L, GUO Y L, FAN M H, et al. Wind speed prediction using measurements from neighboring locations and combining the extreme learning machine and the AdaBoost algorithm[J]. Energy Reports, 2022, 8: 1508-1518.
|
[6] |
杨笑, 王志章, 周子勇, 等. 基于参数优化AdaBoost算法的酸性火山岩岩性分类[J]. 石油学报, 2019, 40(4): 457-467.
doi: 10.7623/syxb201904007
|
[7] |
李翔宇, 程坤, 谭思超, 等. 基于Adaboost算法的核电站故障诊断方法[J]. 核动力工程, 2022, 43(4): 118-125.
|
[8] |
刘禹欣, 朱勇, 孙结冰, 等. Haar-like特征双阈值Adaboost人脸检测[J]. 中国图象图形学报, 2020, 25(8): 1618-1626.
|
[9] |
王强. 基于AdaBoost回归树的电网基建投资模型研究[D]. 重庆: 电子科技大学, 2019.
|
[10] |
FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of online learning and anapplication to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
|
[11] |
DRUCKER H. Improving regressions using boosting techniques[C]// Proc of the 14th Int Conf Machine Learning, 1997: 107- 115.
|
[12] |
SHRESTHA D L, SOLOMATINE D P. Experiments with AdaBoost.RT, an improved boosting scheme for regression[J]. Neural computation, 2006, 18(7): 1678-710.
pmid: 16764518
|
[13] |
田慧欣, 刘玉栋, 孟博. 基于AdaBoost.RS算法的LF炉钢水温度预报分析[J]. 钢铁研究学报, 2017, 29(2): 98-104+122.
doi: 10.13228/j.boyuan.issn1001-0963.20160105
|
[14] |
JI L, CHENTAO Z, XUKUN Z, et al. Temperature Compensation of Piezo-Resistive Pressure Sensor Utilizing Ensemble AMPSO-SVR Based on Improved Adaboost. RT[J]. IEEE Access, 2020, 8: 12413-12425.
|
[15] |
汪森辉, 李海峰, 张永杰, 等. 基于改进的AdaBoost.RS算法的烧结终点预报分析[J]. 中国冶金, 2019, 29(10): 13-19.
|
[16] |
朱亮, 徐华, 成金海, 等. AdaBoost的样本权重与组合系数的分析及改进[J]. 计算机应用, 2022, 42(07):2022-2029.
|
[17] |
张戈, 盖赟. 局部离群因子算法(LOF)在异常检测中的应用研究[J]. 网络安全技术与应用, 2020, (11):49-50.
|
[18] |
杭菲璐, 郭威, 陈何雄, 等. 基于iForest和LOF的流量异常检测[J/OL]. 计算机应用研究 2022, 39(10): 1-6[2022-09-01]. http://www.arocmag.com/article/02-2022-10-031.html.
|
[19] |
孙凤琪, 史鉴. 基于AdaBoost.R2和ELM的软测量新方法[J]. 东北师大学报(自然科学版), 2008, (3):26-30.
|
[20] |
GELBARD R, GOLDMAN O, SPIEGLER I. Investigating diversity of clustering methods: An empirical comparison[J]. Data & Knowledge Engineering, 2007, 63(1): 155-166.
|
[21] |
屠恩美, 杨杰. 半监督学习理论及其研究进展概述[J]. 上海交通大学学报, 2018, 52(10): 1280-1291.
doi: 10.16183/j.cnki.jsjtu.2018.10.017
|
[22] |
ENGIN P, CABIR M A, TAHIR M A, et al. Decision tree regression model to predict low-rank coal moisture content during convective drying process[J]. International Journal of Coal Preparation and Utilization, 2020, 40(8): 505-512.
|