[1] |
HUANG F Q, DOU X K, LEI J H, et al. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China[J]. Journal of Geophysical Research, 2016, 121(9): 8887-8899.
|
[2] |
SHIOKAWA K, IHARA C, OTSUKA Y, et al. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A1): 1052.
|
[3] |
OTSUKA Y, SHIOKAWA K, OGAWA T, et al. Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers[J]. Geophysical Research Letters, 2004, 31: L15803.
|
[4] |
HUNSUCKER R D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review[J]. Reviews of Geophysics, 1982, 20: 293-315
|
[5] |
WANG N, LI Z, YUAN Y, et al. BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions[J]. GPS Solutions, 2021, 25(3): 97.
|
[6] |
GUBENKO V N, ANDREEV V E, KIRILLOVICH I A, et al. Radio occultation studies of disturbances in the Earth’s ionosphere during a magnetic storm on June 22-23, 2015[J]. Geomagnetism and Aeronomy, 2021, 61: 810-818.
|
[7] |
GOODMAN J M. Operational communication systems and relationships to the ionosphere and space weather[J]. Advances in Space Research, 2005, 36(12): 2241-2252.
|
[8] |
MAHESWARAN V K, OTSUKA Y, BASKARADAS J A, et al. Solar activity dependence for the relationship between nighttime medium-scale traveling ionospheric disturbance and sporadic E (Es) layer activities in summer during 1998-2019 over Japan[J]. Earth, Planets and Space, 2024, 76: 88.
|
[9] |
PERKINS F. Spread F and ionospheric currents[J]. Journal of Geophysical Research, 1973, 78(1): 218-226.
|
[10] |
HAMZA A M. Perkins instability revisited[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A10): 22567-22575.
|
[11] |
GARCIA F J, KELLEY M C, MAKELA J J, et al. Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18407-18415.
|
[12] |
MAELA J J and KELLEY M C. Using the 630.0-nm nightglow emission as a surrogate for the ionosopheric Pedersen conductivity[J]. Journal of Geophysical Research: Space Physics, 2003, 108: 1253
|
[13] |
YOKOYAMA T, HYSELL D L, OTSUKA Y, et al. Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 2009, 114: A03308.
|
[14] |
XU J Y, LI Q Z, SUN L C, et al. The ground-based airglow imager network in China[M]// WangW B, ZhangY, PaxtonL J, Upper atmosphere dynamics and energetics, geophysical monograph series. America: American Geophysical Union, 2021: 365-394.
|
[15] |
YU S, XIAO Z, AA E, et al. Observational investigation of the possible correlation between medium-scale TIDs and mid-latitude spread F[J]. Advances in Space Research, 2016, 58(3): 349-357.
|
[16] |
WANG C. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8(8): S08001.
|
[17] |
CLAUSEN L B N, NICKISCH H. Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning[J]. Journal of Geophysical Research: Space Physics, 2018, 123(7): 5640-5647.
|
[18] |
YANG X, WANG N, SONG B, et al. BoSR: A CNN-based aurora image retrieval method[J]. Neural Networks, 2019, 116: 188-197.
doi: S0893-6080(19)30110-8
pmid: 31121417
|
[19] |
LAI C, XU J Y, YUE J, et al. Automatic extraction of gravity waves from all-sky airglow image based on machine learning[J]. Remote Sensing, 2019, 11(13): 1516.
|
[20] |
SUN L, XU J Y, WANG W, et al. A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China[J]. Journal of Geophysical Research: Space Physics, 2016, 121(11): 11495-11517.
|
[21] |
GARCIA F J, TAYLOR M J, KELLEY M C. Two-dimensional spectral analysis of mesospheric airglow image data[J]. Applied Optics, 1997, 36(29): 7374-7385.
pmid: 18264245
|
[22] |
LAI C, XU J Y, LIN Z S, et al. Statistical characteristics of nighttime medium-scale traveling ionospheric disturbances from 10-years of airglow observation by the machine learning method[J]. Space Weather, 2023, 21: e2023SW003430 1-14.
|
[23] |
HAZEYAMA W, NISHITANI N, HORI T, et al. Statistical study of seasonal and solar activity dependence of nighttime MSTIDs occurrence using the Super DARN Hokkaido pair of radars[J]. Journal of Geophysical Research: Space Physics, 2022, 127(4): e2021JA029965.
|
[24] |
COSGROVE R B, TSUNODA R T. Instability of the E-F coupled nighttime midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A4): A04305.
|
[25] |
FIGUEIREDO C A O B, TAKAHASHI H, WRASSE C M, et al. Investigation of nighttime MSTIDS observed by optical thermosphere imagers at low latitudes: morphology, propagation direction, and wind filtering[J]. Journal of Geophysical Research: Space Physics, 2018, 123(9): 7843-7857.
|
[26] |
KATAMZI-JOSEPH Z T, GRAWE M A, MAKELA J J, et al. First results on characteristics of nighttime MSTIDs observed over South Africa: Influence of thermospheric wind and sporadic E[J]. Journal of Geophysical Research: Space Physics, 2022, 127(11): e2022JA030375.
|
[27] |
OTSUKA Y, KOTAKE N, SHIOKAWA K, et al. Statistical study of medium-scale traveling ionospheric disturbances observed with a GPS receiver network in Japan. ABDU M A, PANCHEVA D. Aeronomy of the Earth’s Atmosphere and Ionosphere[M]. Dordrecht: Springer, 2011: 291-299.
|