数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (6): 67-80.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.06.007

doi: 10.11871/jfdc.issn.2096-742X.2023.06.007

• • 上一篇    下一篇

基于多尺度前馈融合结构的重采样因子估计算法

郭静(),张玉金*(),江智呈,孙冉   

  1. 上海工程技术大学,电子电气工程学院,上海 201620
  • 收稿日期:2022-05-20 出版日期:2023-12-20 发布日期:2023-12-25
  • 通讯作者: 张玉金(E-mail: yjzhang@sues.edu.cn
  • 作者简介:郭静,上海工程技术大学,电子电气工程学院,硕士研究生,主要研究方向为图像处理、图像取证以及计算机视觉。
    本文中负责提出总体算法,并对算法的可行性进行理论分析和实验验证,撰写论文。
    GUO Jing, is a graduate student studying in the School of Electronic and Electrical Engineering at Shanghai University of engineering and technology. Her main research interests are image processing, image forensics, and computer vision.
    In this paper, she is responsible for proposing the overall algorithm, theoretically analyzing and experimentally verifying the feasibility of the algorithm, and writing the paper.
    E-mail: bella_guojing@163.com|张玉金,上海工程技术大学,电子电气工程学院,博士,副教授,主要研究方向为多媒体取证、图像处理与模式识别。
    本文中负责对算法提出相关建议,对实验过程以及结果进行监督。
    ZHANG Yujin, Ph.D., is an associate professor at the School of Electronic and Electrical Engineering, Shanghai University of engineering and technology. His main research interests include multimedia forensics, image processing, and pattern recognition.
    In this paper, he is responsible for putting forward relevant suggestions on the algorithm and supervising the experimental process and results.
    E-mail: yjzhang@sues.edu.cn
  • 基金资助:
    上海市自然科学基金(17ZR1411900);上海市科委重点项目(18511101600);上海高校青年教师培养资助计划项目(ZZGCD 15090);上海市信息安全综合管理技术研究重点实验室项目(AGK2015006)

A Estimation Algorithm of Resampling Factor Based on Multi-Level Feedforward Fusion Structure

GUO Jing(),ZHANG Yujin*(),JIANG Zhicheng,SUN Ran   

  1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2022-05-20 Online:2023-12-20 Published:2023-12-25

摘要:

【目的】 重采样是掩盖图像篡改痕迹的重要手段,为了更加精确地实现对重采样缩放参数的检测,验证图像信息的真实性,本文提出一种基于多尺度前馈融合结构的重采样因子估计算法。【方法】 在预处理层中,首先使用两个线性高通滤波器得到重采样图像的残差特征,抑制图像内容带来的影响,放大区域内像素之间的关联性,其次利用4个低阶高通滤波器在不同方向上强化像素的梯度特征,该算法的主体结构为卷积神经网络,在网络的不同层级处提取出多尺度重采样分类痕迹,结合注意力机制,形成多尺度残差融合模块(Multiscale Residual Fusion Module, MRFM),补偿卷积过程中重采样信息的丢失,标定特征信息传递过程中的有效性,同时去除信息冗余,加速网络收敛。【结果】 实验表明,本文所提算法的网络增益由预处理层和多尺度残差融合模块共同决定,准确性明显高于对比的其他算法,尤其在强噪声的干扰下,本文所提算法具有明显的优势。

关键词: 重采样因子估计, 高通滤波器, 卷积神经网络, 多尺度残差融合

Abstract:

[Objective] Resampling is an important measure to cover the traces of image tampering. In order to accurately detect resampling scaling parameters and verify the authenticity of image information, this paper proposes a resampling factor estimation algorithm based on the multi-scale feed-forward fusion structure. [Methods] In the preprocessing layer, the residual characteristics of the resampled image are obtained by using two linear high-pass filters, the impact of image content is suppressed, the correlation between pixels in the region is enlarged, and then the gradient characteristics of pixels are strengthened in different directions by using four low-order high-pass filters. The main structure of the algorithm is a convolutional neural network, and multi-scale resampling classification traces are extracted at different levels of the network, combined with the attention mechanism. The Multiscale Residual Fusion Module (MRFM) is formed to compensate for the loss of resampled information during convolution, achieve effective transmission of the calibration characteristic information, and remove information redundancy to accelerate network convergence.[Results] Experiments show that the network gain of the proposed algorithm is determined by the pretreatment layer and the multi-scale residual fusion module, and the accuracy is significantly higher than that of other algorithms in comparison, especially under the condition of strong noise interference of strong. The proposed algorithm is of obvious advantages.

Key words: resampling factor estimation, high-pass filter, convolution neural network, multi-scale residual fusion