数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (3): 15-27.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.03.002
doi: 10.11871/jfdc.issn.2096-742X.2024.03.002
王志永1(),刘晶晶2,王新明1,陈博文1,聂伟1,张瀚林1,刘洪海1,*(
)
收稿日期:
2023-11-02
出版日期:
2024-06-20
发布日期:
2024-06-21
通讯作者:
*刘洪海(E-mail: 作者简介:
王志永,哈尔滨工业大学(深圳),博士,硕士生导师,研究方向为从事人机交互技术、脑功能响应、多模态感知技术及其在医疗应用领域的应用。基金资助:
WANG Zhiyong1(),LIU Jingjing2,WANG Xinming1,CHEN Bowen1,NIE Wei1,ZHANG Hanlin1,LIU Honghai1,*(
)
Received:
2023-11-02
Online:
2024-06-20
Published:
2024-06-21
摘要:
【目的】近年来人工智能和传感技术的快速发展为孤独症的诊疗提供了新的手段和方向。本文围绕孤独症人工智能诊疗技术进行了文献综述,为未来工作提供参考。【文献范围】本文采用关键字检索的方法调研了来自主流会议和期刊的相关论文,并进行了总结归纳。【方法】从临床人工诊疗发展、基于人工智能的诊断研究、基于人工智能的干预研究三个方面分别介绍基于不同方法和传感技术的研究进展。【结果】孤独症人工智能诊疗有助于克服临床上的局限性,如主观性强、耗时长、资源紧缺等。【局限】相关文献多为近年来的工作,对更早期的工作可能存在遗漏。【结论】通过分析最新的人工智能方法对孤独症诊疗的影响,梳理孤独症人工智能诊疗的挑战和展望,有助于推动孤独症人工智能辅助诊疗理论和技术的发展。
王志永, 刘晶晶, 王新明, 陈博文, 聂伟, 张瀚林, 刘洪海. 孤独症人工智能诊疗进展及前沿[J]. 数据与计算发展前沿, 2024, 6(3): 15-27.
WANG Zhiyong, LIU Jingjing, WANG Xinming, CHEN Bowen, NIE Wei, ZHANG Hanlin, LIU Honghai. Advancements and Frontiers in Autism Diagnosis and Treatment Based on Artificial Intelligence[J]. Frontiers of Data and Computing, 2024, 6(3): 15-27, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.03.002.
[1] | GUILLON Q, HADJIKHANI N, BADUEL S, et al. Visual social attention in autism spectrum disorder: Insights from eye tracking studies[J]. Neuroscience & Biobehavioral Reviews, 2014, 42: 279-297. |
[2] | CONTROL C F D, PREVENTION. Key findings from the ADDM network: A snapshot of autism spectrum disorder[M]. Community Report on Autism, 2016: 1-3. |
[3] | 五彩鹿儿童行为矫正中心. 中国自闭症教育康复行业发展状况报告[M]. 中国自闭症教育康复行业发展状况报告, 2015: 1-372. |
[4] |
RODGERS M, SIMMONDS M, MARSHALL D, et al. Intensive behavioural interventions based on applied behaviour analysis for young children with autism: An international collaborative individual participant data meta-analysis[J]. Autism, 2021, 25(4): 1137-53.
doi: 10.1177/1362361320985680 pmid: 33482692 |
[5] |
SCASSELLATI B, ADMONI H, MATARIĆ M. Robots for use in autism research[J]. Annual Review of Biomedical Engineering, 2012, 14: 275-294.
doi: 10.1146/annurev-bioeng-071811-150036 pmid: 22577778 |
[6] | LIU X, WU Q, ZHAO W, et al. Technology-facilitated diagnosis and treatment of individuals with autism spectrum disorder: An engineering perspective[J]. Applied Sciences, 2017, 7(10): 1051. |
[7] |
MAGIATI I, CHARMAN T, HOWLIN P. A two-year prospective follow-up study of community-based early intensive behavioural intervention and specialist nursery provision for children with autism spectrum disorders[J]. Journal of Child Psychology and Psychiatry, 2007, 48(8): 803-812.
pmid: 17683452 |
[8] |
MING S, MULHERN T, STEWART I, et al. Training class inclusion responding in typically developing children and individuals with autism[J]. Journal of Applied Behavior Analysis, 2018, 51(1): 53-60.
doi: 10.1002/jaba.429 pmid: 29265371 |
[9] | LORD C, CHARMAN T, HAVDAHL A, et al. The Lancet Commission on the future of care and clinical research in autism[J]. The Lancet, 2022, 399(10321): 271-334. |
[10] |
LORD C, RUTTER M, LE COUTEUR A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders[J]. Journal of Autism and Developmental Disorders, 1994, 24(5): 659-685.
doi: 10.1007/BF02172145 pmid: 7814313 |
[11] | ROBINS D, FEIN D, BARTON M. Modified checklist for autism in toddlers (M-CHAT) follow-up interview[J/OL]. Self-published, 1999, https://www.mchat-screen.com/. |
[12] |
ROBINS D L, CASAGRANDE K, BARTON M, et al. Validation of the modified checklist for autism in toddlers, revised with follow-up (M-CHAT-R/F)[J]. Pediatrics, 2014, 133(1): 37-45.
doi: 10.1542/peds.2013-1813 pmid: 24366990 |
[13] |
RELLINI E, TORTOLANI D, TRILLO S, et al. Childhood Autism Rating Scale (CARS) and Autism Behavior Checklist (ABC) correspondence and conflicts with DSM-IV criteria in diagnosis of autism[J]. Journal of Autism and Developmental Disorders, 2004, 34: 703-708.
doi: 10.1007/s10803-004-5290-2 pmid: 15679189 |
[14] | LORD C, RISI S, LAMBRECHT L, et al. The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism[J]. Journal of Autism and Developmental Disorders, 2000, 30: 205-223. |
[15] |
GOTHAM K, RISI S, PICKLES A, et al. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity[J]. Journal of Autism and Developmental Disorders, 2007, 37: 613-627.
doi: 10.1007/s10803-006-0280-1 pmid: 17180459 |
[16] | BAIO J, WIGGINS L, CHRISTENSEN D L, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014[J]. MMWR Surveillance Summaries, 2018, 67(6): 1. |
[17] | 徐秀, 邹小兵, 李廷玉. 孤独症谱系障碍儿童早期识别筛查和早期干预专家共识[J]. 中华儿科杂志, 2017, 55(12): 890-897. |
[18] | 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健学组. 中国低龄孤独症谱系障碍患儿家庭干预专家共识[J]. 中华儿科杂志, 2022, 60(5): 6. |
[19] | MELICAN K, RICHTER-DAHLFORS A. International Classification of Diseases (ICD)[M]. Encyclopedia of Biostatistics, 2011: 1-3. |
[20] | World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY[M]. World Health Organization, 2007: 1-351. |
[21] |
HUME K, STEINBRENNER J R, ODOM S L, et al. Evidence-based practices for children, youth, and young adults with autism: Third generation review[J]. Journal of Autism and Developmental Disorders, 2021, 51(11): 4013-4032.
doi: 10.1007/s10803-020-04844-2 pmid: 33449225 |
[22] | 孙哲南, 张兆翔, 王威, 等. 2019年人工智能新态势与新进展[J]. 数据与计算发展前沿, 2019, 1(2): 1-16. |
[23] | 陈琼, 杨咏, 黄天林, 冯媛. 小样本图像语义分割综述[J]. 数据与计算发展前沿, 2021, 3(6): 17-34. |
[24] | WANG L, LIU J, ZHANG W, et al. Diagnosis and Intervention for Children with Autism Spectrum Disorder: A Survey[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(3): 819-832. |
[25] | AKSHOOMOFF N, LORD C, LINCOLN A J, et al. Outcome Classification of Preschool Children with Autism Spectrum Disorders using MRI Brain Measures[J]. Journal of the American Academy of Child & Adolescent Psychiatry, 2004, 43(3): 349-357. |
[26] | HAZLETT H C, GU H, MUNSELL B C, et al. Early brain development in infants at high risk for autism spectrum disorder[J]. Nature, 2017, 542(7641): 348-351. |
[27] |
KOYAMA M S, DI MARTINO A, ZUO X-N, et al. Resting-state functional connectivity indexes reading competence in children and adults[J]. Journal of Neuroscience, 2011, 31(23): 8617-8624.
doi: 10.1523/JNEUROSCI.4865-10.2011 pmid: 21653865 |
[28] | GREEN S A, HERNANDEZ L, BOOKHEIMER S Y, et al. Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity[J]. Journal of the American Academy of Child & Adolescent Psychiatry, 2016, 55(7): 618-626. e1. |
[29] |
BUCH A M, VéRTES P E, SEIDLITZ J, et al. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder[J]. Nature Neuroscience, 2023, 26(4): 650-663.
doi: 10.1038/s41593-023-01259-x pmid: 36894656 |
[30] | WANG M, ZHANG D, HUANG J, et al. Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation[J]. IEEE Transactions on Medical Imaging, 2019, 39(3): 644-655. |
[31] | HUANG Z-A, ZHU Z, YAU C H, et al. Identifying autism spectrum disorder from resting-state fMRI using deep belief network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(7): 2847-2861. |
[32] |
BOSL W J, TAGER-FLUSBERG H, NELSON C A. EEG analytics for early detection of autism spectrum disorder: a data-driven approach[J]. Scientific Reports, 2018, 8(1): 6828.
doi: 10.1038/s41598-018-24318-x pmid: 29717196 |
[33] | 张丹. 基于脑电指标的孤独症儿童辅助诊断系统[D]. 燕山大学, 2019. |
[34] |
NAPLES A J, WU J, MAYES L C, et al. Event-related potentials index neural response to eye contact[J]. Biological Psychology, 2017, 127: 18-24.
doi: S0301-0511(17)30073-X pmid: 28396215 |
[35] |
TYE C, BATTAGLIA M, BERTOLETTI E, et al. Altered neurophysiological responses to emotional faces discriminate children with ASD, ADHD and ASD+ADHD[J]. Biological Psychology, 2014, 103: 125-134.
doi: 10.1016/j.biopsycho.2014.08.013 pmid: 25179537 |
[36] | SU W-C, CULOTTA M, MUELLER J, et al. fNIRS-Based Differences in Cortical Activation during Tool Use, Pantomimed Actions, and Meaningless Actions between Children with and without Autism Spectrum Disorder (ASD)[J]. Brain Sciences, 2023, 13(6): 876. |
[37] | SU W-C, CULOTTA M, MUELLER J, et al. Autism-Related Differences in Cortical Activation When Observing, Producing, and Imitating Communicative Gestures: An fNIRS Study[J]. Brain Sciences, 2023, 13(9): 1284. |
[38] | ALVARES G A, QUINTANA D S, KEMP A H, et al. Reduced heart rate variability in social anxiety disorder: associations with gender and symptom severity[J]. PloS one, 2013, 8(7): e70468. |
[39] |
BENEVIDES T W, LANE S J. A review of cardiac autonomic measures: considerations for examination of physiological response in children with autism spectrum disorder[J]. Journal of autism and developmental disorders, 2015, 45: 560-575.
doi: 10.1007/s10803-013-1971-z pmid: 24154761 |
[40] | HERRY C L, BURNS P, DESROCHERS A, et al. Vagal contributions to fetal heart rate variability: an omics approach[J]. Physiological measurement, 2019, 40(6): 065004. |
[41] | TILWANI D, BRADSHAW J, SHETH A, et al. ECG Recordings as Predictors of Very Early Autism Likelihood: A Machine Learning Approach[J]. Bioengineering, 2023, 10(7): 827. |
[42] | 钟艺豪. 基于深度学习的孤独症儿童辅助诊断研究[D]. 南昌大学, 2019. |
[43] |
CAMPBELL K, CARPENTER K L, HASHEMI J, et al. Computer vision analysis captures atypical attention in toddlers with autism[J]. Autism, 2019, 23(3): 619-628.
doi: 10.1177/1362361318766247 pmid: 29595333 |
[44] | WANG Z, LIU J, HE K, et al. Screening Early Children With Autism Spectrum Disorder via Response-to-Name Protocol[J]. IEEE Transactions on Industrial Informatics, 2019, 17(1): 587-595. |
[45] | LIU J, WANG Z, XU K, et al. Early Screening of Autism in Toddlers via Response-To-Instructions Protocol[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3914-3924. |
[46] | LIU J, WANG Z, QIN H, et al. Social Recognition of Joint Attention Cycles in Children with Autism Spectrum Disorders[J]. IEEE Transactions on Biomedical Engineering, 2024, 71(1): 237-246,. |
[47] | MARINOIU E, ZANFIR M, OLARU V, et al. 3d human sensing, action and emotion recognition in robot assisted therapy of children with autism[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2018: 2158-2167. |
[48] | TIAN Y, MIN X, ZHAI G, et al. Video-based early asd detection via temporal pyramid networks[C]. proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), F, 2019: 272-277. |
[49] | DEL COCO M, LEO M, CARCAGNI P, et al. A computer vision based approach for understanding emotional involvements in children with autism spectrum disorders[C]. proceedings of the Proceedings of the IEEE International Conference on Computer Vision Workshops, F, 2017: 1401-1407. |
[50] | KALANTARIAN H, JEDOUI K, WASHINGTON P, et al. A mobile game for automatic emotion-labeling of images[J]. IEEE Transactions on Games, 2018, 12(2): 213-218. |
[51] | 唐传高, 郑文明, 宗源, 等. 深度空时婴幼儿表情识别模型下的ASD自动筛查[J]. 中国图象图形学报, 2020, 25(11): 11. |
[52] |
DAWSON G, CAMPBELL K, HASHEMI J, et al. Atypical postural control can be detected via computer vision analysis in toddlers with autism spectrum disorder[J]. Scientific Reports, 2018, 8(1): 17008.
doi: 10.1038/s41598-018-35215-8 pmid: 30451886 |
[53] | 陈靓影, 张如静, 王帆, 等. 孤独症儿童早期社交技能的智能化评估——以应答性共同注意和应答性社交微笑为例[J]. 电化教育研究, 2019, 40(11): 114-120, 128. |
[54] | LI J, CHEN Z, LI G, et al. Automatic classification of ASD children using appearance-based features from videos[J]. Neurocomputing, 2022, 470: 40-50. |
[55] | LIU J, WANG Z, AND LIU H, et al. Multimodal Emotion Recognition for Children with Autism Spectrum Disorder in Social Interaction[J/OL]. International Journal of Human-Computer Interaction, 2023: 1-10. DOI: 10.1080/10447318.2023.2232194. |
[56] | ZHANG S, CHEN D, TANG Y, et al. Learning graph-based relationship of dual-modal features towards subject adaptive ASD assessment[J]. Neurocomputing, 2023, 516: 194-204. |
[57] | VETTORI S, VAN DER DONCK S, NYS J, et al. Combined frequency-tagging EEG and eye-tracking measures provide no support for the “excess mouth/diminished eye attention” hypothesis in autism[J]. Molecular Autism, 2020, 11(1): 1-22. |
[58] |
VETTORI S, DZHELYOVA M, VAN DER DONCK S, et al. Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder[J]. Cortex, 2020, 125: 135-148.
doi: S0010-9452(19)30430-7 pmid: 31982699 |
[59] |
DI MARTINO A, YAN C-G, LI Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Molecular psychiatry, 2014, 19(6): 659-667.
doi: 10.1038/mp.2013.78 pmid: 23774715 |
[60] | BILLING E, BELPAEME T, CAI H, et al. The DREAM Dataset: Supporting a data-driven study of autism spectrum disorder and robot enhanced therapy[J]. PloS one, 2020, 15(8): e0236939. |
[61] | BAIRD A, AMIRIPARIAN S, CUMMINS N, et al. Automatic classification of autistic child vocalisations: A novel database and results[J]. 2017, 849-853. DOI: 10.21437/Interspeech.2017-730. |
[62] | REHG J, ABOWD G, ROZGA A, et al. Decoding children's social behavior[C]. proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2013: 3414-3421. |
[63] |
JäNCKE L. The plastic human brain[J]. Restorative Neurology and Neuroscience, 2009, 27(5): 521-538.
doi: 10.3233/RNN-2009-0519 pmid: 19847074 |
[64] | DEMIRTAS-TATLIDEDE A, VAHABZADEH-HAGH A M, PASCUAL-LEONE A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders?[J]. Neuropharmacology, 2013, 64: 566-78. |
[65] |
SOKHADZE E M, EL-BAZ A, BARUTH J, et al. Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism[J]. Journal of Autism and Developmental Disorders, 2009, 39: 619-634.
doi: 10.1007/s10803-008-0662-7 pmid: 19030976 |
[66] |
SOKHADZE E M, BARUTH J M, SEARS L, et al. Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism[J]. Applied psychophysiology and biofeedback, 2012, 37: 91-102.
doi: 10.1007/s10484-012-9182-5 pmid: 22311204 |
[67] |
WANG Y, HENSLEY M K, TASMAN A, et al. Heart rate variability and skin conductance during repetitive TMS course in children with autism[J]. Applied psychophysiology and biofeedback, 2016, 41: 47-60.
doi: 10.1007/s10484-015-9311-z pmid: 26341093 |
[68] | CASANOVA M F, SOKHADZE E M, CASANOVA E L, et al. Transcranial magnetic stimulation in autism spectrum disorders: Neuropathological underpinnings and clinical correlations[C]. proceedings of the Seminars in pediatric neurology, F, Elsevier, 2020: 100832. |
[69] | COLE E J, ENTICOTT P G, OBERMAN L M, et al. The potential of repetitive transcranial magnetic stimulation for autism spectrum disorder: a consensus statement[J]. Biological Psychiatry, 2019, 85(4): e21-e2. |
[70] | D’URSO G, FERRUCCI R, BRUZZESE D, et al. Transcranial direct current stimulation for autistic disorder[J]. Biological Psychiatry, 2014, 76(5): e5-e6. |
[71] | AMATACHAYA A, AUVICHAYAPAT N, PATJANASOONTORN N, et al. Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial[J]. Behavioural Neurology, 2014, (2014): 173073. |
[72] | FAN L, CAO W, DU Y, et al. Virtual Reality App for ASD Child Early Training[C]. proceedings of the VR/AR and 3D Displays:First International Conference, ICVRD 2020, Hangzhou, China, December 20, 2020, Revised Selected Papers 1, F, 2021: 89-102. |
[73] | NIE G, ULLAL A, ZHENG Z, et al. An immersive computer-mediated caregiver-child interaction system for young children with autism spectrum disorder[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 884-893. |
[74] | TSAI W-T, LEE I-J, CHEN C-H. Inclusion of third-person perspective in CAVE-like immersive 3D virtual reality role-playing games for social reciprocity training of children with an autism spectrum disorder[J]. Universal Access in the Information Society, 2021, 20: 375-389. |
[75] | RUDOVIC O, LEE J, DAI M, et al. Personalized machine learning for robot perception of affect and engagement in autism therapy[J]. Science Robotics, 2018, 3(19): eaao6760. |
[76] | MA H, CHEN B, REN W, et al. Assessment System for Imitative Ability for Children with Autism Spectrum Disorder Based on Human Pose Estimation[C]. proceedings of the International Conference on Intelligent Robotics and Applications, F, 2022: 360-369. |
[77] | LI J, CHHEANG V, KULLU P, et al. MMASD: A Multimodal Dataset for Autism Intervention Analysis[C]. proceedings of the International Conference on Multimodal Interaction, F, 2023: 397-405. |
[1] | 寇大治. 基于深度学习的口腔全景片牙齿自动分割方法[J]. 数据与计算发展前沿, 2024, 6(3): 162-172. |
[2] | 何睿琳, 杨欣怡, 孙洪赞, 李晨. 基于图特征的组织病理学图像分析方法的最新发展情况与展望[J]. 数据与计算发展前沿, 2024, 6(2): 101-116. |
[3] | 赵青, 张越, 张崇斌, 田东, 崔文凯, 单桂华. 基于增强现实的多线索远程工业协同系统[J]. 数据与计算发展前沿, 2023, 5(6): 138-152. |
[4] | 朱明明, 曹无敌, 吴林, 王自溪, 廖琦, 张思, 唐晓, 李杰, 王婧, 王彦棡, 王自发. 基于人工智能与大数据的双碳大气环境信息化应用进展与展望[J]. 数据与计算发展前沿, 2023, 5(3): 2-12. |
[5] | 胡晓彦,徐寄遥,邹自明. “大数据&人工智能”驱动的空间天气科研范式变革初步探索[J]. 数据与计算发展前沿, 2023, 5(2): 24-36. |
[6] | 齐法制,李刚,李纯,汪璐,张一,张正德,陈刚,罗武鸣,赵丽娜,胡誉,袁野. 基于人工智能的高能物理大数据技术与应用[J]. 数据与计算发展前沿, 2023, 5(2): 50-59. |
[7] | 王凡,冯立强,曹荣强. 大数据驱动的海洋人工智能服务平台设计与应用[J]. 数据与计算发展前沿, 2023, 5(2): 73-85. |
[8] | 王宗国,万萌,陈子逸,李凯,王晓光,刘淼,孟胜,王彦棡. 数据驱动的材料智能设计平台研究与应用[J]. 数据与计算发展前沿, 2023, 5(2): 86-96. |
[9] | 刘嘉琪,杨斌艳. 我国人工智能与社会科学耦合发展的热点与趋势研究——基于CiteSpace的文献计量分析[J]. 数据与计算发展前沿, 2022, 4(6): 77-91. |
[10] | 王海涛,宋丽华. 情景感知:基本概念、关键技术与应用系统[J]. 数据与计算发展前沿, 2022, 4(3): 110-123. |
[11] | 张润滋,刘文懋. AISecOps智能安全运营技术体系框架[J]. 数据与计算发展前沿, 2021, 3(3): 32-47. |
[12] | 袁勇,欧阳丽炜,王晓,王飞跃. 基于区块链的智能组件:一种分布式人工智能研究新范式[J]. 数据与计算发展前沿, 2021, 3(1): 1-14. |
[13] | 莫梓嘉,高志鹏,苗东. 边缘智能:人工智能向边缘分布式拓展的新触角[J]. 数据与计算发展前沿, 2020, 2(4): 16-27. |
[14] | 喻鹏,李文璟,丰雷,周凡钦,杨杨,邱雪松. 面向未来6G网络的智能管控架构与关键技术[J]. 数据与计算发展前沿, 2020, 2(3): 32-44. |
[15] | 李肯立,阳王东,陈岑,陈建国,丁岩. 面向人工智能和大数据的高效能计算[J]. 数据与计算发展前沿, 2020, 2(1): 27-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||