数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (3): 3-14.

CSTR: 32002.14.jfdc.CN10-1649/TP.2024.03.001

doi: 10.11871/jfdc.issn.2096-742X.2024.03.001

• 专刊:智慧医疗前沿与进展(下) • 上一篇    下一篇

基于深度学习的医学多模态数据融合方法在肿瘤学中的进展和挑战

蔡程飞1,3(),李军2,焦一平2,王向学2,郭冠辰1,徐军2,*()   

  1. 1.南京信息工程大学,自动化学院,江苏 南京 210044
    2.南京信息工程大学,人工智能学院,江苏 南京 210044
    3.泰州学院,信息工程学院,江苏 泰州 225300
  • 收稿日期:2023-10-21 出版日期:2024-06-20 发布日期:2024-06-21
  • 通讯作者: *徐军(E-mail: jxu@nuist.edu.cn
  • 作者简介:蔡程飞,南京信息工程大学自动化学院,博士研究生,主要研究方向为病理图像计算、多模态信息融合。
    本文承担工作为文献的收集整理以及整体内容的撰写。
    CAI Chengfei is a doctoral candidate in the School of Automation, Nanjing University of Information Science and Technology. His main research directions include pathological image calculation and multi-modal information fusion.
    In this paper, he is responsible for literature collection and organization, as well as thesis writing.
    E-mail:chengfeicai@nuist.edu.cn|徐军,南京信息工程大学人工智能学院,副院长,智慧医疗研究院执行院长,博士研究生导师,二级教授,主要研究方向为医学图像计算、计算病理、数字病理、疾病辅助诊疗和预后。
    本文承担的工作为整体规划和论文指导。
    XU Jun is the Vice Dean of the School of Artificial Intelligence and the Executive Director of the Institute of Smart Healthcare at Nanjing University of Information Science and Technology. He is a doctoral supervisor and holds the title of Professor at the second level. His primary research areas include medical image computing, computational pathology, digital pathology, disease-assisted diagnosis, and prognosis.
    In this paper, he is responsible for the overall planning and paper guidance.
    E-mail: jxu@nuist.edu.cn
  • 基金资助:
    国家自然科学基金(62171230);国家自然科学基金(62101365);国家自然科学基金(92159301);国家自然科学基金(91959207);国家自然科学基金(62301263);国家自然科学基金(62301265);国家自然科学基金(62302228);国家自然科学基金(82302291);国家自然科学基金(82302352)

Progress and Challenges of Medical Multimodal Data Fusion Methods Based on Deep Learning in Oncology

CAI Chengfei1,3(),LI Jun2,JIAO Yiping2,WANG Xiangxue2,GUO Guanchen1,XU Jun2,*()   

  1. 1. School of Automation, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
    2. School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
    3. College of Information Engineering, Taizhou University, Taizhou, Jiangsu 225300, China
  • Received:2023-10-21 Online:2024-06-20 Published:2024-06-21

摘要:

【目的】在肿瘤学中,患者有一系列的临床数据,从放射学、组织学、基因组学到电子健康记录。不同数据模式的整合为提高诊断和预后模型的稳健性和准确性提供了机会,使人工智能在临床实践发挥重要作用。【方法】本文将探讨深度学习技术以及其在肿瘤医学数据中的应用,并研究肿瘤学领域多模态数据融合方法的潜在影响和重要发现。【结果】多模态数据能够更好地发现与患者治疗响应、预后效果相关的信息,从而构建更加鲁棒的深度学习模型。【结论】深度学习已经在医学领域取得了显著的进展,特别是在肿瘤学研究中处理多模态医学数据。这些进展为临床提供了更准确、更快速的工具来进行肿瘤的检测、分割、分类和预后预测,同时也面临很多挑战亟须解决。

关键词: 多模态, 医学数据, 肿瘤学, 深度学习

Abstract:

[Objective] In oncology, patients have a range of clinical data spanning radiology, histology, genomics, and electronic health records. Integrating diverse data modalities presents an opportunity to enhance the robustness and accuracy of diagnostic and prognostic models, enabling artificial intelligence to play a crucial role in clinical practice. [Methods] This article explores the techniques of deep learning and its application in oncology data, as well as investigates the potential impact and essential findings of multimodal data fusion methods in the field of oncology. [Results] Multimodal data can better uncover information related to patient treatment responses and predictive outcomes, thus constructing more robust deep learning models. [Conclusions] Deep learning has achieved significant advance in the medical field, particularly in handling multimodal medical data in oncology research. These advancements provide clinical practitioners with more accurate and faster tools for tumour detection, segmentation, classification, and prognosis prediction. At the same time, many challenges need to be solved.

Key words: multimodal, medical data, oncology, deep learning