[1] |
XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J/OL]. Chinese Medical Journal, 2022, 135(5): 584-590. https://doi.org/10.1097/CM9.0000000000002108.
|
[2] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J/OL]. CA: a cancer journal for clinicians, 2021, 71(3): 209-249. https://doi.org/10.3322/caac.21660.
|
[3] |
HOOSHMAND S, REED W M, SULEIMAN M E, et al. A review of screening mammography: The benefits and radiation risks put into perspective[J/OL]. Journal of Medical Imaging and Radiation Sciences, 2022, 53(1): 147-158. https://doi.org/10.1016/j.jmir.2021.12.002.
|
[4] |
ZHANG M, LIN Q, SU X H, et al. Breast ductal carcinoma in situ with micro-invasion versus ductal carcinoma in situ: a comparative analysis of clinicopathological and mammographic findings[J/OL]. Clinical Radiology, 2021, 76(10): 787.e1-787.e7. https://doi.org/10.1016/j.crad.2021.04.011.
|
[5] |
AZAM S, ERIKSSON M, SJÖLANDER A, et al. Mammographic microcalcifications and risk of breast cancer[J/OL]. British Journal of Cancer, 2021, 125(5): 759-765. https://doi.org/10.1038/s41416-021-01459-x.
|
[6] |
MADANI M, BEHZADI M M, NABAVI S. The Role of Deep Learning in Advancing Breast Cancer Detection Using Different Imaging Modalities: A Systematic Review[J/OL]. Cancers, 2022, 14(21): 5334. https://doi.org/10.3390/cancers14215334.
|
[7] |
MRIDHA M F, HAMID Md A, MONOWAR M M, et al. A Comprehensive Survey on Deep-Learning-Based Breast Cancer Diagnosis[J/OL]. Cancers, 2021, 13(23): 6116. https://doi.org/10.3390/cancers13236116.
|
[8] |
CHEN Q Q, LIN S T, YE J Y, et al. Diagnostic value of mammography density of breast masses by using deep learning[J/OL]. Frontiers in Oncology, 2023, 13: 1110657. https://doi.org/10.3389/fonc.2023.1110657.
|
[9] |
CHOI W J, AN J K, WOO J J, et al. Comparison of Diagnostic Performance in Mammography Assessment: Radiologist with Reference to Clinical Information Versus Standalone Artificial Intelligence Detection[J/OL]. Diagnostics, 2023, 13(1): 117. https://doi.org/10.3390/diagnostics13010117.
|
[10] |
马捷, 左敏, 孙国平, 等. 乳腺癌钼靶X线表现与c-erbB-2癌基因相关性[J/OL]. 放射学实践, 20150228(03)[2023-08-12]. http://www.fsxsj.net/ch/reader/view_abstract.aspx?file_no=20060314&flag=1.
|
[11] |
FARROKH D, BOLOURSAZ S, HOMAI F. Relationship among mammographic findings with histopathologic type of breast cancer and human epidermal growth factor receptor 2 (HER2) in young women[J/OL]. Electronic Physician, 2017, 9(5): 4300-4305. https://doi.org/10.19082/4300.
|
[12] |
HOSSAIN M S. Microc alcification Segmentation Using Modified U-net Segmentation Network from Mammogram Images[J/OL]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(2): 86-94. https://doi.org/10.1016/j.jksuci.2019.10.014.
|
[13] |
GUO X, O’NEILL W C, VEY B, et al. SCU-Net: A deep learning method for segmentation and quantification of breast arterial calcifications on mammograms[J/OL]. Medical Physics, 2021, 48(10): 5851-5861. https://doi.org/10.1002/mp.15017.
|
[14] |
PESAPANE F, TRENTIN C, FERRARI F, et al. Deep learning performance for detection and classification of microcalcifications on mammography[J/OL]. European Radiology Experimental, 2023, 7(1): 69. https://doi.org/10.1186/s41747-023-00384-3.
|
[15] |
MAKEEV A, RODAL G, GHAMMRAOUI B, et al. Exploring CNN potential in discriminating benign and malignant calcifications in conventional and dual-energy FFDM: simulations and experimental observations[J/OL]. Journal of Medical Imaging, 2021, 8(3): 033501. https://doi.org/10.1117/1.JMI.8.3.033501.
|
[16] |
CHEN J L, CHENG L H, WANG J, et al. A YOLO-based AI system for classifying calcifications on spot magnification mammograms[J/OL]. BioMedical Engineering OnLine, 2023, 22(1): 54. https://doi.org/10.1186/s12938-023-01115-w.
|
[17] |
SONGSAENG C, WOODTICHARTPREECHA P, CHAICHULEE S. Multi-Scale Convolutional Neural Networks for Classification of Digital Mammograms With Breast Calcifications[J/OL]. IEEE Access, 2021, 9: 114741-114753. https://doi.org/10.1109/ACCESS.2021.3104627.
doi: 10.1109/ACCESS.2021.3104627
|
[18] |
ALRUWAILI M, GOUDA W. Automated Breast Cancer Detection Models Based on Transfer Learning[J/OL]. Sensors (Basel, Switzerland), 2022, 22(3): 876. https://doi.org/10.3390/s22030876.
|
[19] |
WANG J, SUN H, JIANG K, et al. CAPNet: Context attention pyramid network for computer-aided detection of microcalcification clusters in digital breast tomosynthesis[J/OL]. Computer Methods and Programs in Biomedicine, 2023, 242: 107831. https://doi.org/10.1016/j.cmpb.2023.107831.
|
[20] |
UEDA D, YAMAMOTO A, ONODA N, et al. Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets[J/OL]. PLOS ONE, 2022, 17(3): e0265751. https://doi.org/10.1371/journal.pone.0265751.
|
[21] |
M C S, M V. Hybrid Transfer Learning of Mammogram Images for Screening of Micro-Calcifications[J/OL]. International Journal of Electrical and Electronics Engineering, 2022, 9(8): 40-47. https://doi.org/10.14445/23488379/IJEEE-V9I8P105.
|
[22] |
LIN X, WU S, LI L, et al. Automatic mammographic breast density classification in Chinese women: clinical validation of a deep learning model[J/OL]. Acta Radiologica, 2023: 028418512311520. https://doi.org/10.1177/02841851231152097.
|
[23] |
LIU H, CHEN Y, ZHANG Y, et al. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening[J/OL]. European Radiology, 2021, 31(8): 5902-5912. https://doi.org/10.1007/s00330-020-07659-y.
|
[24] |
中华医学会影像技术分会, 中华医学会放射学分会. 乳腺影像检查技术专家共识[J]. 中华放射学杂志, 2016, 50(8): 561-565.
|
[25] |
ZHANG Y, TANG Y, CAO Z, et al. BI-RADS Classification of Calcification on Mammograms[M/OL]//DE BRUIJNE M, CATTIN P C, COTIN S, et al. Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 卷12907. Cham: Springer International Publishing, 2021: 119-128[2023-10-13]. https://link.springer.com/10.1007/978-3-030-87234-2_12.
|
[26] |
CAO Z, YANG Z, ZHUO X, et al. DeepLIMa: Deep Learning Based Lesion Identification in Mammograms[C/OL]// 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 362-370. https://doi.org/10.1109/ICCVW.2019.00047.
|
[27] |
KERSCHKE L, WEIGEL S, RODRIGUEZ-RUIZ A, et al. Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance[J/OL]. European Radiology, 2022, 32(2): 842-852. https://doi.org/10.1007/s00330-021-08217-w.
|
[28] |
YANG Z, CAO Z, ZHANG Y, et al. MommiNet-v2: Mammographic multi-view mass identification networks[J/OL]. Medical Image Analysis, 2021, 73: 102204. https://doi.org/10.1016/j.media.2021.102204.
|
[29] |
KANG D, GWEON H M, EUN N L, et al. A convolutional deep learning model for improving mammographic breast-microcalcification diagnosis[J/OL]. Scientific Reports, 2021, 11(1): 23925. https://doi.org/10.1038/s41598-021-03516-0.
|
[30] |
MUTASA S, CHANG P, NEMER J, et al. Prospective Analysis Using a Novel CNN Algorithm to Distinguish Atypical Ductal Hyperplasia From Ductal Carcinoma in Situ in Breast[J/OL]. Clinical breast cancer, 2020, 20(6): e757-e760. https://doi.org/10.1016/j.clbc.2020.06.001.
|