数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (2): 68-79.

CSTR: 32002.14.jfdc.CN10-1649/TP.2024.02.007

doi: 10.11871/jfdc.issn.2096-742X.2024.02.007

• 专刊:智慧医疗前沿与进展(上) • 上一篇    下一篇

基于深度学习乳腺X线摄影钙化识别分类模型的临床应用价值

袁家琳1,2(),欧阳汝珊3,戴懿4,赖小慧5,马捷1,2,*(),龚静山1,2   

  1. 1.暨南大学,第二临床医学院,广东 深圳 518020
    2.深圳市人民医院,放射科,广东 深圳 518020
    3.中山大学第八附属医院(深圳福田),放射科,广东 深圳 518033
    4.北京大学深圳医院,放射科,广东 深圳 518036
    5.深圳市罗湖区人民医院,放射科,广东 深圳 518000
  • 收稿日期:2023-10-23 出版日期:2024-04-20 发布日期:2024-04-26
  • 通讯作者: *马捷(E-mail: cjr.majie@vip.163.com
  • 作者简介:袁家琳,深圳市人民医院放射科主治医师,暨南大学在读博士生。研究方向为深度学习在影像检查图像中的应用,主要擅长影像图像后处理,弥散成像,结构网络的应用。
    本文中负责实验实施与统计分析、结果验证、论文撰写。
    YUAN Jialin is a radiologist at Shenzhen People's Hospital and a doctoral student at Jinan University. Her research focuses on the application of deep learning in medical imaging, with expertise in image post-processing, diffusion imaging, and the application of structural networks.
    In this paper, she is responsible for project implementation, statistical analysis, result validation, and paper writing.
    E-mail: yuan.jialin@szhospital.com|马捷,深圳市人民医院分院放射科主任,主任医师,教授,硕士生导师,长期致力于影像诊断的临床及基础研究工作,擅长乳腺影像诊断及微创活检,美国哈佛大学布列根妇女医院访问学者。曾获得广东省科技进步奖2项,深圳市科技进步奖4项,发表学术论文60余篇,已出版著作3部,获得成果转换三项。
    本文中负责研究规划、项目指导与论文修改。
    MA Jie is the Director of the Radiology Department at Shenzhen People's Hospital (Longhua Branch), Chief Physician, Professor, and Master's Supervisor, and a visiting scholar at Harvard University's Brigham and Women's Hospital. Her expertise lies in breast diagnostic imaging. She is awarded for scientific and technological progress. She has published over 60 academic papers and authored three books. Furthermore, She has three technology transfer projects.
    In this paper, she is responsible for research planning, project guidance, and paper revisions.
    E-mail: cjr.majie@vip.163.com
  • 基金资助:
    国家自然科学基金面上项目“面向数据不确定性的多模态医学影像分析理论和方法”(62276121);广东省医学科研基金“基于深度学习的乳腺X线摄影与自然语言处理技术对乳腺内潜在恶性病变的分层评估研究”(A2024506);深圳市科技创新委员会国际科技自主合作项目“基于多模态深度学习算法对乳腺癌筛查和诊断评估系统研究”(GJHZ20220913142613025)

Assessing the Clinical Utility of a Deep Learning-Based Model for Calcification Recognition and Classification in Mammograms

YUAN Jialin1,2(),OUYANG Rushan3,DAI Yi4,LAI Xiaohui5,MA Jie1,2,*(),GONG Jingshan1,2   

  1. 1. The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong 518020, China
    2. Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
    3. Department of Radiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
    4. Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
    5. Department of Radiology, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong 518000, China
  • Received:2023-10-23 Online:2024-04-20 Published:2024-04-26

摘要:

【目的】引入基于深度学习乳腺X线摄影钙化识别及分类模型,探讨深度学习技术对钙化灶的准确识别、分类和临床应用价值。【方法】采用多中心乳腺X线检查数据,分别由高-初级诊断医生及两名初级诊断医生采用不结合及结合深度学习模型进行病灶评估,评价其诊断效能。【结果】引入深度学习模型识别钙化灶能力与高-初级诊断医生及两名初级诊断医生识别钙化灶能力相仿(漏检率分别为0.81%vs.0.65%,1.14%vs.1.63%,P>0.05),深度学习模型能够有效帮助高-初级诊断医生(灵敏度0.926,AUC0.81,P=0.014)及两名初级诊断医生(灵敏度0.896,AUC0.79,P=0.049)检出可疑恶性钙化灶,特别是在良性病变中的准确率提升作用明显。【局限】仍需更多前瞻性多中心数据验证模型稳健性,也需引入不同深度学习模型比较其临床应用价值。【结论】深度学习模型有助于乳腺X线摄影钙化识别及分类评估,有助于乳腺癌大规模筛查背景下提供辅助诊断及临床策略支持。

关键词: 乳腺病变, 乳腺X线摄影术, 钙化识别, 深度学习

Abstract:

[Objective] This article is to assess the clinical application value of a deep learning-based model for recognizing and classifying mammography calcifications. [Methods] Multicenter mammography data were employed, with lesion assessments conducted by both senior-junior radiologists and two junior radiologists. The deep learning-based model was used in both standalone and combined approaches. Diagnostic performance was then evaluated. [Results] The introduction of the deep learning model demonstrates comparable capabilities to senior-junior radiologists and two junior radiologists (miss rates: 0.81% vs. 0.65%, 1.14% vs. 1.63%, P>0.05). The deep learning model effectively assists senior-junior radiologists (sensitivity 0.926, AUC 0.81, P=0.014) and two junior radiologists (sensitivity 0.896, AUC 0.79, P=0.049) in detecting suspicious calcifications, especially in benign lesions. [Limitations] The study requires more prospective multicenter data and different deep learning models to compare their clinical utility. [Conclusions] Deep learning frameworks offer valuable support for mammography calcification recognition and classification, providing rapid assistance for diagnosis and clinical strategy support.

Key words: breast lesions, mammography, calcification recognition, deep learning