[1] |
丁怀玉, 魏明丽. 冠心病基础与临床[M]. 大连理工大学出版社, 2008: 149-177.
|
[2] |
宗振方, 董平栓. 血管内超声在冠心病介入诊疗中的临床应用[J]. 医学综述, 2012, 18(17): 2854-2856.
|
[3] |
SOEST G, MARCU L, BOUMA B E, et al. Intravascular imaging for characterization of coronary atherosclerosis[J]. Current Opinion in Biomedical Engineering, 2017, 3: 1-12.
|
[4] |
BRUSSEAU E, DE KORTE C L, MASTIK F, et al. Fully automatic luminal contour segmentation in intracoronary ultrasound imaging-a statistical approach[J]. IEEE transactions on medical imaging, 2004, 23(5): 554-566.
|
[5] |
YANG J, TONG L, FARAJI M, et al. IVUS-Net: An intravascular ultrasound segmentation network[C]. Smart Multimedia: First International Conference, ICSM 2018, Toulon, France, August 24-26, 2018, Revised Selected Papers 1 2018: 367-377.
|
[6] |
NISHI T, YAMASHITA R, IMURA S, et al. Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease[J]. International journal of cardiology, 2021, 333: 55-59.
doi: 10.1016/j.ijcard.2021.03.020
pmid: 33741429
|
[7] |
BLANCO P J, ZIEMER P G, BULANT C A, et al. Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets[J/OL]. Medical image analysis, 2022. https://doi.org/10.1016/j.media.2021.102262
|
[8] |
SINHA P, PSAROMILIGKOS I, ZILIC Z. CNN-based automatic segmentation of Lumen & Media boundaries in IVUS images using closed polygonal chains[J/OL]. arXiv preprint arXiv: 2309.17406, 2023. https://doi.org/10.48550/arXiv.2309.17406
|
[9] |
SU S, HU Z, LIN Q, et al. An artificial neural network method for lumen and media-adventitia border detection in IVUS[J]. Computerized Medical Imaging and Graphics, 2017, 57: 29-39.
doi: S0895-6111(16)30101-X
pmid: 28062170
|
[10] |
MILUTINOVIĆ A, ŠUPUT D, ZORC-PLESKOVIČ R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review[J]. Bosnian Journal of Basic Medical Sciences, 2020, 20(1): 21-30.
|
[11] |
JINNOUCHI H, SATO Y, SAKAMOTO A, et al. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability[J]. Atherosclerosis, 2020, 306: 85-95.
doi: S0021-9150(20)30291-4
pmid: 32654790
|
[12] |
DAWSON L P, LUM M, NERLEKER N, et al. Coronary atherosclerotic plaque regression: JACC state-of-the-art review[J]. Journal of the American College of Cardiology, 2022, 79(1): 66-82.
|
[13] |
OLENDER M L, ATHANASIOU L S, MICHALIS L K, et al. A domain enriched deep learning approach to classify atherosclerosis using intravascular ultrasound imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(6): 1210-1220.
doi: 10.1109/jstsp.2020.3002385
pmid: 33520048
|
[14] |
BAJAJ R, EGGERMONT J, GRAINGER S J, et al. Machine learning for atherosclerotic tissue component classification in combined near-infrared spectroscopy intravascular ultrasound imaging: Validation against histology[J]. Atherosclerosis, 2022, 345: 15-25.
doi: 10.1016/j.atherosclerosis.2022.01.021
pmid: 35196627
|
[15] |
PENG S, JIANG W, PI H, et al. Deep snake for real-time instance segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8533-8542.
|
[16] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211.
doi: 10.1038/s41592-020-01008-z
pmid: 33288961
|