| [1] | 丁怀玉, 魏明丽. 冠心病基础与临床[M]. 大连理工大学出版社, 2008: 149-177. | 
																													
																						| [2] | 宗振方, 董平栓. 血管内超声在冠心病介入诊疗中的临床应用[J]. 医学综述, 2012, 18(17): 2854-2856. | 
																													
																						| [3] | SOEST G, MARCU L, BOUMA B E,  et al. Intravascular imaging for characterization of coronary atherosclerosis[J]. Current Opinion in Biomedical Engineering, 2017, 3: 1-12. | 
																													
																						| [4] | BRUSSEAU E, DE KORTE C L, MASTIK F,  et al. Fully automatic luminal contour segmentation in intracoronary ultrasound imaging-a statistical approach[J]. IEEE transactions on medical imaging, 2004, 23(5): 554-566. | 
																													
																						| [5] | YANG J, TONG L, FARAJI M,  et al. IVUS-Net: An intravascular ultrasound segmentation network[C]. Smart Multimedia: First International Conference, ICSM 2018, Toulon, France, August 24-26, 2018, Revised Selected Papers 1 2018: 367-377. | 
																													
																						| [6] | NISHI T, YAMASHITA R, IMURA S,  et al. Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease[J]. International journal of cardiology, 2021, 333: 55-59. doi: 10.1016/j.ijcard.2021.03.020
																																					pmid: 33741429
 | 
																													
																						| [7] | BLANCO P J, ZIEMER P G, BULANT C A,  et al. Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets[J/OL]. Medical image analysis, 2022. https://doi.org/10.1016/j.media.2021.102262 | 
																													
																						| [8] | SINHA P, PSAROMILIGKOS I, ZILIC Z. CNN-based automatic segmentation of Lumen & Media boundaries in IVUS images using closed polygonal chains[J/OL]. arXiv preprint arXiv: 2309.17406, 2023. https://doi.org/10.48550/arXiv.2309.17406 | 
																													
																						| [9] | SU S, HU Z, LIN Q,  et al. An artificial neural network method for lumen and media-adventitia border detection in IVUS[J]. Computerized Medical Imaging and Graphics, 2017, 57: 29-39. doi: S0895-6111(16)30101-X
																																					pmid: 28062170
 | 
																													
																						| [10] | MILUTINOVIĆ A, ŠUPUT D, ZORC-PLESKOVIČ R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review[J]. Bosnian Journal of Basic Medical Sciences, 2020, 20(1): 21-30. | 
																													
																						| [11] | JINNOUCHI H, SATO Y, SAKAMOTO A,  et al. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability[J]. Atherosclerosis, 2020, 306: 85-95. doi: S0021-9150(20)30291-4
																																					pmid: 32654790
 | 
																													
																						| [12] | DAWSON L P, LUM M, NERLEKER N,  et al. Coronary atherosclerotic plaque regression: JACC state-of-the-art review[J]. Journal of the American College of Cardiology, 2022, 79(1): 66-82. | 
																													
																						| [13] | OLENDER M L, ATHANASIOU L S, MICHALIS L K,  et al. A domain enriched deep learning approach to classify atherosclerosis using intravascular ultrasound imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(6): 1210-1220. doi: 10.1109/jstsp.2020.3002385
																																					pmid: 33520048
 | 
																													
																						| [14] | BAJAJ R, EGGERMONT J, GRAINGER S J,  et al. Machine learning for atherosclerotic tissue component classification in combined near-infrared spectroscopy intravascular ultrasound imaging: Validation against histology[J]. Atherosclerosis, 2022, 345: 15-25. doi: 10.1016/j.atherosclerosis.2022.01.021
																																					pmid: 35196627
 | 
																													
																						| [15] | PENG S, JIANG W, PI H,  et al. Deep snake for real-time instance segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8533-8542. | 
																													
																						| [16] | ISENSEE F, JAEGER P F, KOHL S A A,  et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211. doi: 10.1038/s41592-020-01008-z
																																					pmid: 33288961
 |