[1] |
LI Q, CHEN K, HAN L, et al. Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN[J]. Journal of X-Ray Science and Technology, 2020, 28(5): 905-922.
doi: 10.3233/XST-200678
pmid: 32986647
|
[2] |
CHOI H R, SIADARI T S, KIM J E, et al. Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks[J]. Forensic Sciences Research, 2022, 7(3): 456-466.
|
[3] |
ALI M A, FUJITA D, KOBASHI S. Teeth and prostheses detection in dental panoramic X-rays using CNN-based object detector and a priori knowledge-based algorithm[J/OL]. Scientific Reports, 2023, 13(1): https://doi.org/10.1038/s41598-023-43591-z.
|
[4] |
CHANDRASHEKAR G, ALQARNI S, BUMANN E E, et al. Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs[J/OL]. Computers in Biology and Medicine, 2022, 148: https://doi.org/10.1016/j.compbiomed.2022.105829.
|
[5] |
CHEN Z, CHEN S, HU F. CTA-UNet: CNN-transformer architecture UNet for dental CBCT images segmentation[J/OL]. Physics in Medicine and Biology, 2023, 68(17): https://dx.doi.org/10.1088/1361-6560/acf026.
|
[6] |
AL-SAREM M, AL-ASALI M, ALQUTAIBI A Y, et al. Enhanced Tooth Region Detection Using Pretrained Deep Learning Models[J/OL]. International Journal of Environmental Research and Public Health, 2022, 19(22): https://doi.org/10.3390/ijerph-192215414.
|
[7] |
JANG W S, KIM S, YUN P S, et al. Accurate detection for dental implant and peri-implant tissue by transfer learning of faster R-CNN: a diagnostic accuracy study[J]. BMC Oral Health, 2022, 22(1): 591.
doi: 10.1186/s12903-022-02539-x
pmid: 36494645
|
[8] |
ELGARBA B M, VAN AELST S, SWAITY A, et al. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study[J/OL]. Journal of Dentistry, 2023, 137: https://doi.org/10.1016/j.jdent.2023.104639.
|
[9] |
CHOI H, JEON K J, KIM Y H, et al. Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images[J/OL]. Scientific Reports, 2022, 12(1): https://doi.org/10.1038/s41598-022-18436-w.
|
[10] |
ZENG P, SONG R, LIN Y, et al. Abnormal maxillary sinus diagnosing on CBCT images via object detection and 'straight-forward' classification deep learning strategy[J/OL]. Journal of Oral Rehabilitation, 2023, https://dx.doi.org/10.1111/joor.13585.
|
[11] |
JASKARI J, SAHLSTEN J, JÄRNSTEDT J, et al. Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes[J/OL]. Scientific Reports, 2020, 10(1): https://doi.org/10.1038/s41598-020-62321-3.
|
[12] |
LAHOUD P, DIELS S, NICLAES L, et al. Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT[J/OL]. Journal of Dentistry, 2022, 116: https://doi.org/10.1016/j.jdent.2021.103891.
|
[13] |
USMAN M, REHMAN A, SALEEM A M, et al. Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans[J/OL]. Sensors (Basel), 2022, 22(24): https://doi.org/10.3390/s22249877.
|
[14] |
ZHAO H, CHEN J, YUN Z, et al. Whole mandibular canal segmentation using transformed dental CBCT volume in Frenet frame[J]. Heliyon, 2023, 9(7): e17651.
|
[15] |
LIU Z, HE X, WANG H, et al. Hierarchical Self-Supervised Learning for 3D Tooth Segmentation in Intra-Oral Mesh Scans[J]. IEEE Transactions on Medical Imaging, 2023, 42(2): 467-480.
|
[16] |
KIM M, CHUNG M, SHIN Y G, et al. Automatic registration of dental CT and 3D scanned model using deep split jaw and surface curvature[J/OL]. Computer Methods and Programs in Biomedicine, 2023, 233: https://doi.org/10.1016/j.cmpb.2023.107467.
|
[17] |
KIM J E, NAM N E, SHIM J S, et al. Transfer Learning via Deep Neural Networks for Implant Fixture System Classification Using Periapical Radiographs[J/OL]. Journal of Clinical Medicine, 2020, 9(4): https://doi.org/10.3390/jcm9041117.
|
[18] |
HADJ SAÏD M, LE ROUX M K, CATHERINE J H, et al. Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph[J]. International Journal of Oral and Maxillofacial Implants, 2020, 36(6): 1077-1082.
doi: 10.11607/jomi.8060
pmid: 33270045
|
[19] |
KONG H J, EOM S H, YOO J Y, et al. Identification of 130 Dental Implant Types Using Ensemble Deep Learning[J]. International Journal of Oral and Maxillofacial Implants, 2023, 38(1): 150-156.
|
[20] |
KONG H J, YOO J Y, LEE J H, et al. Performance evaluation of deep learning models for the classification and identification of dental implants[J/OL]. Journal of Prosthetic Dentistry, 2023, https://doi.org/10.1016/j.prosdent.2023.07.009.
|
[21] |
LEE J H, KIM Y T, LEE J B, et al. A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study[J/OL]. Diagnostics (Basel), 2020, 10(11): https://doi.org/10.3390/diagnostics10110910.
|
[22] |
LEE J H, KIM Y T, LEE J B, et al. Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency[J]. Journal of Periodontal & Implant Science, 2022, 52(3): 220-229.
|
[23] |
PARK W, SCHWENDICKE F, KROIS J, et al. Identification of Dental Implant Systems Using a Large-Scale Multicenter Data Set[J]. Journal of Dental Research, 2023, 102(7): 727-733.
|
[24] |
PARK W, HUH J K, LEE J H. Automated deep learning for classification of dental implant radiographs using a large multi-center dataset[J]. Scientific Reports, 2023, 13(1): 4862.
|
[25] |
SUKEGAWA S, YOSHII K, HARA T, et al. Multi-Task Deep Learning Model for Classification of Dental Implant Brand and Treatment Stage Using Dental Panoramic Radiograph Images[J/OL]. Biomolecules, 2021, 11(6): https://doi.org/10.3390/biom11060815.
|
[26] |
LIU M, WANG S, CHEN H, et al. A pilot study of a deep learning approach to detect marginal bone loss around implants[J]. BMC Oral Health, 2022, 22(1): 11.
doi: 10.1186/s12903-021-02035-8
pmid: 35034611
|
[27] |
OH S, KIM Y J, KIM J, et al. Deep learning-based prediction of osseointegration for dental implant using plain radiography[J]. BMC Oral Health, 2023, 23(1): 208.
doi: 10.1186/s12903-023-02921-3
pmid: 37031221
|
[28] |
CHA J Y, YOON H I, YEO I S, et al. Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional Neural Network on Dental Periapical Radiographs[J/OL]. Journal of Clinical Medicine, 2021, 10(5): https://doi.org/10.3390/jcm10051009.
|
[29] |
VERA M, GÓMEZ-SILVA M J, VERA V, et al. Artificial Intelligence Techniques for Automatic Detection of Peri-implant Marginal Bone Remodeling in Intraoral Radiographs[J]. Journal of Digital Imaging, 2023, 36(5): 2259-2277.
doi: 10.1007/s10278-023-00880-3
pmid: 37468696
|
[30] |
CHEN Y C, CHEN M Y, CHEN T Y, et al. Improving Dental Implant Outcomes: CNN-Based System Accurately Measures Degree of Peri-Implantitis Damage on Periapical Film[J/OL]. Bioengineering (Basel), 2023, 10(6): https://doi.org/10.3390/bioengineering10060640.
|
[31] |
HUANG N, LIU P, YAN Y, et al. Predicting the risk of dental implant loss using deep learning[J]. Journal of Clinical Periodontology, 2022, 49(9): 872-883.
|
[32] |
ZHANG C, FAN L, ZHANG S, et al. Deep learning based dental implant failure prediction from periapical and panoramic films[J]. Quant Imaging Med Surg, 2023, 13(2): 935-945.
|
[33] |
HUANG Z, ZHENG H, HUANG J, et al. The Construction and Evaluation of a Multi-Task Convolutional Neural Network for a Cone-Beam Computed-Tomography-Based Assessment of Implant Stability[J/OL]. Diagnostics (Basel), 2022, 12(11): https://doi.org/10.3390/diagnostics12112673.
|
[34] |
KURT BAYRAKDAR S, ORHAN K, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images[J]. BMC Medical Imaging, 2021, 21(1): 86.
doi: 10.1186/s12880-021-00618-z
pmid: 34011314
|
[35] |
XIAO Y, LIANG Q, ZHOU L, et al. Construction of a new automatic grading system for jaw bone mineral density level based on deep learning using cone beam computed tomography[J/OL]. Scientific Reports, 2022, 12(1): https://doi.org/10.1038/s41598-022-16074-w.
|
[36] |
SAKAI T, LI H, SHIMADA T, et al. Development of artificial intelligence model for supporting implant drilling protocol decision making[J]. Journal of Prosthodontic Research, 2023, 67(3): 360-365.
|