[1] |
BUSER D, BORNSTEIN M M, WEBER H P, et al. Early implant placement with simultaneous guided bone regeneration following single-tooth extraction in the esthetic zone: a cross-sectional, retrospective study in 45 subjects with a 2- to 4-year follow-up[J]. Journal of Periodontology, 2008, 79(9): 1773-1781.
doi: 10.1902/jop.2008.080071
pmid: 18771381
|
[2] |
刘峰. 数字化引导技术在口腔美学种植修复中的应用[J]. 中华口腔医学杂志, 2020, 55(5): 357-360.
|
[3] |
宿玉成. 浅谈数字化口腔种植治疗[J]. 中华口腔医学杂志, 2016, 51(4): 194-200.
|
[4] |
BOLDING S L, REEBYE U N. Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches[J]. The Journal of prosthetic dentistry, 2022, 128(4): 639-647.
|
[5] |
王俊成, 时权, 刘洪臣. 人工智能在口腔种植中的应用[J]. 口腔颌面修复学杂志, 2022, 23(2): 81-85.
|
[6] |
CAO Z, QIN C, FAN S, et al. Pilot study of a surgical robot system for zygomatic implant placement[J]. Medical Engineering & Physics, 2020, 75: 72-78.
|
[7] |
YANG S, CHEN J, LI A, et al. Autonomous Robotic Surgery for Immediately Loaded Implant-Supported Maxillary Full-Arch Prosthesis: A Case Report[J/OL]. Journal of Clinical Medicine, 2022, 11(21): https://doi.org/10.3390/jcm11216594.
|
[8] |
陈江. 机器人在口腔种植领域的应用[J]. 中国口腔种植学杂志, 2022, 27(5): 274-279.
|
[9] |
陈江, 宿玉成, 沈国芳. 口腔种植机器人临床应用的专家共识(第一版)[J]. 中国口腔种植学杂志, 2023, 28(3): 134-139.
|
[10] |
李艳琴, 陈江. 机器人系统辅助口腔种植手术精度的Meta分析[J]. 中国口腔种植学杂志, 2023, 28(3): 186-192.
|
[11] |
YANG S, CHEN J, LI A, et al. Accuracy of autonomous robotic surgery for single-tooth implant placement: A case series[J/OL]. Journal of Dentistry, 2023, 132: https://doi.org/10.1016/j.jdent.2023.104451.
|
[12] |
吴煜, 邹士琦, 王霄. 口腔种植机器人在口腔种植手术中的初步应用[J]. 中国微创外科杂志, 2021, 21(9): 5.
|
[13] |
姜雨汐, 孙仕晨, 万林子, 等. 口腔种植机器人在即刻种植中的精度研究[J]. 中国口腔种植学杂志, 2023, 28(3): 165-171.
|
[14] |
ELGARBA B M, VAN AELST S, SWAITY A, et al. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study[J/OL]. Journal of Dentistry, 2023, 137: https://doi.org/10.1016/j.jdent.2023.104639
|
[15] |
CHOI H, JEON K J, KIM Y H, et al. Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images[J/OL]. Scientific Reports, 2022, 12(1): https://doi.org/10.1038/s41598-022-18436-w.
|
[16] |
LEE J H, KIM Y T, LEE J B, et al. A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study[J/OL]. Diagnostics (Basel), 2020, 10(11): https://doi.org/10.3390/diagnostics10110910.
|
[17] |
LEE J H, KIM Y T, LEE J B, et al. Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency[J]. Journal of Periodontal and Implant Science, 2022, 52(3): 220-229.
|
[18] |
PARK W, SCHWENDICKE F, KROIS J, et al. Identification of Dental Implant Systems Using a Large-Scale Multicenter Data Set[J]. Journal of Dental Research, 2023, 102(7): 727-733.
|
[19] |
KURT BAYRAKDAR S, ORHAN K, BAYRAKDAR I S, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images[J/OL]. BMC Medical Imaging, 2021, 21(1): https://doi.org/10.1186/s12880-021-00618-z.
|
[20] |
XIAO Y, LIANG Q, ZHOU L, et al. Construction of a new automatic grading system for jaw bone mineral density level based on deep learning using cone beam computed tomography[J/OL]. Scientific Reports, 2022, 12(1): https://doi.org/10.1038/s41598-022-16074-w.
|