| [1] | LI Q, CHEN K, HAN L,  et al. Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN[J]. Journal of X-Ray Science and Technology, 2020, 28(5): 905-922. doi: 10.3233/XST-200678
																																					pmid: 32986647
 | 
																													
																						| [2] | CHOI H R, SIADARI T S, KIM J E,  et al. Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks[J]. Forensic Sciences Research, 2022, 7(3): 456-466. | 
																													
																						| [3] | ALI M A, FUJITA D, KOBASHI S. Teeth and prostheses detection in dental panoramic X-rays using CNN-based object detector and a priori knowledge-based algorithm[J/OL]. Scientific Reports, 2023, 13(1): https://doi.org/10.1038/s41598-023-43591-z. | 
																													
																						| [4] | CHANDRASHEKAR G, ALQARNI S, BUMANN E E,  et al. Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs[J/OL]. Computers in Biology and Medicine, 2022, 148: https://doi.org/10.1016/j.compbiomed.2022.105829. | 
																													
																						| [5] | CHEN Z, CHEN S, HU F. CTA-UNet: CNN-transformer architecture UNet for dental CBCT images segmentation[J/OL]. Physics in Medicine and Biology, 2023, 68(17): https://dx.doi.org/10.1088/1361-6560/acf026. | 
																													
																						| [6] | AL-SAREM M, AL-ASALI M, ALQUTAIBI A Y,  et al. Enhanced Tooth Region Detection Using Pretrained Deep Learning Models[J/OL]. International Journal of Environmental Research and Public Health, 2022, 19(22): https://doi.org/10.3390/ijerph-192215414. | 
																													
																						| [7] | JANG W S, KIM S, YUN P S,  et al. Accurate detection for dental implant and peri-implant tissue by transfer learning of faster R-CNN: a diagnostic accuracy study[J]. BMC Oral Health, 2022, 22(1): 591. doi: 10.1186/s12903-022-02539-x
																																					pmid: 36494645
 | 
																													
																						| [8] | ELGARBA B M, VAN AELST S, SWAITY A,  et al. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study[J/OL]. Journal of Dentistry, 2023, 137: https://doi.org/10.1016/j.jdent.2023.104639. | 
																													
																						| [9] | CHOI H, JEON K J, KIM Y H,  et al. Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images[J/OL]. Scientific Reports, 2022, 12(1): https://doi.org/10.1038/s41598-022-18436-w. | 
																													
																						| [10] | ZENG P, SONG R, LIN Y,  et al. Abnormal maxillary sinus diagnosing on CBCT images via object detection and 'straight-forward' classification deep learning strategy[J/OL]. Journal of Oral Rehabilitation, 2023, https://dx.doi.org/10.1111/joor.13585. | 
																													
																						| [11] | JASKARI J, SAHLSTEN J, JÄRNSTEDT J,  et al. Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes[J/OL]. Scientific Reports, 2020, 10(1): https://doi.org/10.1038/s41598-020-62321-3. | 
																													
																						| [12] | LAHOUD P, DIELS S, NICLAES L,  et al. Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT[J/OL]. Journal of Dentistry, 2022, 116: https://doi.org/10.1016/j.jdent.2021.103891. | 
																													
																						| [13] | USMAN M, REHMAN A, SALEEM A M,  et al. Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans[J/OL]. Sensors (Basel), 2022, 22(24): https://doi.org/10.3390/s22249877. | 
																													
																						| [14] | ZHAO H, CHEN J, YUN Z,  et al. Whole mandibular canal segmentation using transformed dental CBCT volume in Frenet frame[J]. Heliyon, 2023, 9(7): e17651. | 
																													
																						| [15] | LIU Z, HE X, WANG H,  et al. Hierarchical Self-Supervised Learning for 3D Tooth Segmentation in Intra-Oral Mesh Scans[J]. IEEE Transactions on Medical Imaging, 2023, 42(2): 467-480. | 
																													
																						| [16] | KIM M, CHUNG M, SHIN Y G,  et al. Automatic registration of dental CT and 3D scanned model using deep split jaw and surface curvature[J/OL]. Computer Methods and Programs in Biomedicine, 2023, 233: https://doi.org/10.1016/j.cmpb.2023.107467. | 
																													
																						| [17] | KIM J E, NAM N E, SHIM J S,  et al. Transfer Learning via Deep Neural Networks for Implant Fixture System Classification Using Periapical Radiographs[J/OL]. Journal of Clinical Medicine, 2020, 9(4): https://doi.org/10.3390/jcm9041117. | 
																													
																						| [18] | HADJ SAÏD M, LE ROUX M K, CATHERINE J H,  et al. Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph[J]. International Journal of Oral and Maxillofacial Implants, 2020, 36(6): 1077-1082. doi: 10.11607/jomi.8060
																																					pmid: 33270045
 | 
																													
																						| [19] | KONG H J, EOM S H, YOO J Y,  et al. Identification of 130 Dental Implant Types Using Ensemble Deep Learning[J]. International Journal of Oral and Maxillofacial Implants, 2023, 38(1): 150-156. | 
																													
																						| [20] | KONG H J, YOO J Y, LEE J H,  et al. Performance evaluation of deep learning models for the classification and identification of dental implants[J/OL]. Journal of Prosthetic Dentistry, 2023, https://doi.org/10.1016/j.prosdent.2023.07.009. | 
																													
																						| [21] | LEE J H, KIM Y T, LEE J B,  et al. A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study[J/OL]. Diagnostics (Basel), 2020, 10(11): https://doi.org/10.3390/diagnostics10110910. | 
																													
																						| [22] | LEE J H, KIM Y T, LEE J B,  et al. Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency[J]. Journal of Periodontal & Implant Science, 2022, 52(3): 220-229. | 
																													
																						| [23] | PARK W, SCHWENDICKE F, KROIS J,  et al. Identification of Dental Implant Systems Using a Large-Scale Multicenter Data Set[J]. Journal of Dental Research, 2023, 102(7): 727-733. | 
																													
																						| [24] | PARK W, HUH J K, LEE J H. Automated deep learning for classification of dental implant radiographs using a large multi-center dataset[J]. Scientific Reports, 2023, 13(1): 4862. | 
																													
																						| [25] | SUKEGAWA S, YOSHII K, HARA T,  et al. Multi-Task Deep Learning Model for Classification of Dental Implant Brand and Treatment Stage Using Dental Panoramic Radiograph Images[J/OL]. Biomolecules, 2021, 11(6): https://doi.org/10.3390/biom11060815. | 
																													
																						| [26] | LIU M, WANG S, CHEN H,  et al. A pilot study of a deep learning approach to detect marginal bone loss around implants[J]. BMC Oral Health, 2022, 22(1): 11. doi: 10.1186/s12903-021-02035-8
																																					pmid: 35034611
 | 
																													
																						| [27] | OH S, KIM Y J, KIM J,  et al. Deep learning-based prediction of osseointegration for dental implant using plain radiography[J]. BMC Oral Health, 2023, 23(1): 208. doi: 10.1186/s12903-023-02921-3
																																					pmid: 37031221
 | 
																													
																						| [28] | CHA J Y, YOON H I, YEO I S,  et al. Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional Neural Network on Dental Periapical Radiographs[J/OL]. Journal of Clinical Medicine, 2021, 10(5): https://doi.org/10.3390/jcm10051009. | 
																													
																						| [29] | VERA M, GÓMEZ-SILVA M J, VERA V,  et al. Artificial Intelligence Techniques for Automatic Detection of Peri-implant Marginal Bone Remodeling in Intraoral Radiographs[J]. Journal of Digital Imaging, 2023, 36(5): 2259-2277. doi: 10.1007/s10278-023-00880-3
																																					pmid: 37468696
 | 
																													
																						| [30] | CHEN Y C, CHEN M Y, CHEN T Y,  et al. Improving Dental Implant Outcomes: CNN-Based System Accurately Measures Degree of Peri-Implantitis Damage on Periapical Film[J/OL]. Bioengineering (Basel), 2023, 10(6): https://doi.org/10.3390/bioengineering10060640. | 
																													
																						| [31] | HUANG N, LIU P, YAN Y,  et al. Predicting the risk of dental implant loss using deep learning[J]. Journal of Clinical Periodontology, 2022, 49(9): 872-883. | 
																													
																						| [32] | ZHANG C, FAN L, ZHANG S,  et al. Deep learning based dental implant failure prediction from periapical and panoramic films[J]. Quant Imaging Med Surg, 2023, 13(2): 935-945. | 
																													
																						| [33] | HUANG Z, ZHENG H, HUANG J,  et al. The Construction and Evaluation of a Multi-Task Convolutional Neural Network for a Cone-Beam Computed-Tomography-Based Assessment of Implant Stability[J/OL]. Diagnostics (Basel), 2022, 12(11): https://doi.org/10.3390/diagnostics12112673. | 
																													
																						| [34] | KURT BAYRAKDAR S, ORHAN K,  et al. A deep learning approach for dental implant planning in cone-beam computed tomography images[J]. BMC Medical Imaging, 2021, 21(1): 86. doi: 10.1186/s12880-021-00618-z
																																					pmid: 34011314
 | 
																													
																						| [35] | XIAO Y, LIANG Q, ZHOU L,  et al. Construction of a new automatic grading system for jaw bone mineral density level based on deep learning using cone beam computed tomography[J/OL]. Scientific Reports, 2022, 12(1): https://doi.org/10.1038/s41598-022-16074-w. | 
																													
																						| [36] | SAKAI T, LI H, SHIMADA T,  et al. Development of artificial intelligence model for supporting implant drilling protocol decision making[J]. Journal of Prosthodontic Research, 2023, 67(3): 360-365. |