数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (6): 138-152.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.06.013

doi: 10.11871/jfdc.issn.2096-742X.2023.06.013

• • 上一篇    下一篇

基于增强现实的多线索远程工业协同系统

赵青1(),张越1,2,张崇斌3,田东1,2,崔文凯4,单桂华1,2,*()   

  1. 1.中国科学院计算机网络信息中心,北京 100083
    2.中国科学院大学,北京 100049
    3.中铁工程设计咨询集团有限公司,北京 100055
    4.中铁上海工程局集团第七工程有限公司,陕西 西安 710016
  • 收稿日期:2023-06-15 出版日期:2023-12-20 发布日期:2023-12-25
  • 通讯作者: 单桂华(E-mail: sgh@sccas.cn
  • 作者简介:赵青,中国科学院计算机网络信息中心,高级工程师,中国计算机学会会员,硕士,主要研究方向:人机交互技术、大数据智能交互与混合现实。
    本文承担的工作为:文章总体框架把握,论文撰写。
    ZHAO Qing is an senior engineer in Computer Network Information Center, Chinese Academy of Science. CCF member. Her research interests include human-computer interaction techniques, Big data intelligent interaction and mixed reality.
    In this paper, she undertakes the following tasks: the overall framework grasping of the article and paper writing.
    E-mail: zhaoqing@sccas.cn|单桂华,中国科学院计算机网络信息中心,研究员,博士,主要研究方向:大数据可视化与可视分析、智能交互。
    本文承担的工作为:文章总体方向把握。
    SHAN Guihua is a professor in Computer Network Information Center, Chinese Academy of Science. Her research interests include big data visualization and visual analysis, intelligent interaction.
    In this paper, she undertakes the following tasks: the overall direction grasping of the article.
    E-mail: sgh@sccas.cn
  • 基金资助:
    中国国家铁路集团有限公司重大科研开发计划项目(K2023G003);中国中铁科研开发计划项目(2020-重大-07);中国中铁科研开发计划项目(2021-重大-05-01);中国中铁科研开发计划项目(2021-重大-10);中铁工程设计咨询集团科研开发计划项目(研2020-12);中铁工程设计咨询集团科研开发计划项目(研2022-5);中铁工程设计咨询集团科研开发计划项目(研2023-5)

Augmented Reality-Based Multi-Cues Remote Industrial Collaboration System

ZHAO Qing1(),ZHANG Yue1,2,ZHANG Chongbin3,TIAN Dong1,2,CUI Wenkai4,SHAN Guihua1,2,*()   

  1. 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. China Railway Engineering Design and Consulting Group Co., Ltd, Beijing 100055, China
    4. The Seventh Engineering Co., LTD., China Railway Shanghai Engineering Bureau Group, Xi'an, Shanxi 710016, China
  • Received:2023-06-15 Online:2023-12-20 Published:2023-12-25

摘要:

【目的】 为解决工业传统巡检方式因工作效率低下、巡检不到位造成人员伤亡和财产损失等问题,提出一种基于增强现实技术的远程工业协同系统。【方法】 该系统设计了双向线索的交互模式,在远程专家和本地工作人员之间创建丰富多样的线索和双向注释来增强双方协作的效率,更高效地完成远程协作任务。为保证专家和工作人员在各自场景中手绘的二维线索信息实时映射为三维线索信息,采用一种基于深度相机焦距的线索信息的扩散虚实算法,该算法可实时获取手势绘制信息,工作人员的目光注视可实时呈现在专家端。为验证该系统的可用性与优势,选择在真实复杂的场景下模拟了远程异地协同巡检任务和设备操控任务,并设计完备的实验和用户问卷调研。【结果】 对比实验结果,表明该系统的新型交互模式具有更高的用户认可度,相比于传统纸质维护说明、音视频电话指导可大幅降低工作人员任务负荷,并提高任务完成效率。【结论】 最后研究了多种形式下用户认知的主观反馈,提出在工业场景下引导用户行为的建议。

关键词: 增强现实, 多线索, 远程协同, 可视分析, 人机交互

Abstract:

[Objective] In order to solve the problems of casualties and property losses caused by low work efficiency and inadequate inspection in the traditional industrial inspection, this paper proposes a remote industrial collaboration system based on augmented reality technology. [Methods] The system enables remote experts and local workers to interact with rich bidirectional clues to complete remote collaboration tasks. In order to ensure that 2D clues drawn by experts and local workers in their respective scenes are mapped to 3D clues in real time, a diffusion virtual reality algorithm based on depth of camera focal length is adopted, which can obtain gesture rendering information in real time. And in order to verify the usability and advantages of the system, this paper simulates remote inspection tasks and equipment control tasks, and then designs comparative experiment and complete user surveys. [Results] The experimental results demonstrate the effectiveness of the augmented reality remote industrial collaboration system in reducing workers' workload. Additionally, it enhances the social presence of both remote parties and improves task efficiency compared to traditional audio and video conferences. Furthermore, this paper utilizesd the outcomes of usability tests to validate the authors' suggested ideas and implementesd improvements for future application scenarios. [Conclusions] Finally, this paper also studiesd the subjective feedback of user cognition in various forms, and puts forward suggestions to guide user behavior in industrial scenarios.

Key words: augmented reality, multiple clues, remote collaboration, visual analysis, human-computer interaction