| [1] | Guo S N, Xu K, Zhao R W, et al. EventThread: visual summarization and stage analysis of event sequence data[J]. IEEE Transactions on Visualization and Computer Graphics, 2018,24(1):56-65. doi: 10.1109/TVCG.2017.2745320
 | 
																													
																						| [2] | Monroe M, Lan R J, Lee H, et al. Temporal event sequence simplification[J]. IEEE Transactions on Visualization and Computer Graphics, 2013,19(12):2227-2236. doi: 10.1109/TVCG.2013.200
 | 
																													
																						| [3] | LIU Z, WANG Y, DONTCHEVA M, et al. Patterns and sequences: Interactive exploration of clickstreams to un-derstand common visitor paths[J]. IEEE Transactions on Visualization and Computer Graphics, 2016,23(1):321-330. doi: 10.1109/TVCG.2016.2598797
 | 
																													
																						| [4] | CHEN Y, XU P, REN L. Sequence synopsis: Optimize visual summary of temporal event data[J]. IEEE transac-tions on visualization and computer graphics, 2017,24(1):45-55. | 
																													
																						| [5] | B H Park, Y Hui, S Boehm, R A Ashraf, C Layton, C En-gelmann. A Big Data Analytics Framework for HPC Log Data: Three Case Studies Using the Titan Supercomputer Log[C] //2018 IEEE International Conference on Cluster Computing (CLUSTER), 2018:571-579. | 
																													
																						| [6] | S Gupta, T Patel, C Engelmann, D Tiwari. Failures in large scale systems: Long-term measurement, analysis, and implications[C] //Proceedings of the International Conference for High Performance Computing, Networ-king, Storage and Analysis, ser. SC'17. New York, NY, USA: ACM, 2017: 44:1-44:12. | 
																													
																						| [7] | T Li, Y Jiang, C Zeng, B Xia, Z Liu, W Zhou, X Zhu, W Wang, L Zhang, J Wu, L Xue, D Bao. FLAP: An end-to-end event log analysis platform for system management[C] //Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD '17. New York, NY, USA: ACM, 2017: 1547-1556. | 
																													
																						| [8] | B H Park, S Hukerikar, R Adamson, C Engelmann. Big data meets HPC log analytics: Scalable approach to under-standing systems at extreme scale[C] //IEEE Cluster 2017 at Workshop on Monitoring and Analysis for High Perfor-mance Computing Systems Plus Applications, Sept 2017: 758-765. | 
																													
																						| [9] | Dror G, Feitelson, Dan Tsafrir, David Krakov. Experience with using the Parallel Workloads Archive[J]. Journal of Parallel and Distributed Computing, 2014,74(10):2967-2982. doi: 10.1016/j.jpdc.2014.06.013
 | 
																													
																						| [10] | 彭燕妮, 樊晓平, 赵颖, 周芳芳. 时间事件序列数据可视化综述[J]. 计算机辅助设计与图形学学报, 2019,31(10):1698-1710. | 
																													
																						| [11] | Huang D D, Tory M, Staub-French S, et al. Visualization techniques for schedule comparison[J]. Computer Graphics Forum, 2009,28(3):951-958. doi: 10.1111/cgf.2009.28.issue-3
 | 
																													
																						| [12] | Han Y, Rozga A, Dimitrova N, et al. Visual analysis of pro-ximal temporal relationships of social and communicative behaviors[J]. Computer Graphics Forum, 2015,34(3):51-60. doi: 10.1111/cgf.12617
 | 
																													
																						| [13] | Krstajic M, Bertini E, Keim D A. CloudLines: compact display of event episodes in multiple time-series[J]. IEEE Transactions on Visualization and Computer Graphics, 2011,17(12):2432-2439. doi: 10.1109/TVCG.2011.179
 | 
																													
																						| [14] | Wongsuphasawat K, Gomez J A G, Plaisant C, et al. LifeFlow: visualizing an overview of event sequences[C]. Proceedings of the SIGCHI Conference on Human Fac-tors in Computing Systems. New York: ACM Press, 2011: 1747-1756. | 
																													
																						| [15] | Wongsuphasawat K, Gotz D. Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2012,18(12):2659-2668. doi: 10.1109/TVCG.2012.225
 | 
																													
																						| [16] | Gotz D, Wongsuphasawat K. Interactive intervention analysis[C] //AMIA Annual Symposium Proceedings, 2012: 274-280. | 
																													
																						| [17] | Tanahashi Y, Hsueh C H, Ma K L. An efficient frame-work for generating storyline visualizations from strea-ming data[J]. IEEE Transactions on Visualization and Computer Graphics, 2015,21(6):730-742. doi: 10.1109/TVCG.2015.2392771
 | 
																													
																						| [18] | Ogawa M, Ma K L. Software evolution storylines[C] //Proceedings of the 5th International Symposium on Soft-ware Visualization. New York: ACM Press, 2010: 35-42. | 
																													
																						| [19] | Tanahashi Y, Ma K L. Design considerations for optimi-zing storyline visualizations[J]. IEEE Transactions on Visualization and Computer Graphics, 2012,18(12):2679-2688. doi: 10.1109/TVCG.2012.212
 | 
																													
																						| [20] | Liu S X, Wu Y C, Wei E X, et al. StoryFlow: tracking the evolution of stories[J]. IEEE Transactions on Visualiza-tion and Computer Graphics, 2013,19(12):2436-2445. | 
																													
																						| [21] | Perer A, Sun J M. MatrixFlow: temporal network visual analytics to track symptom evolution during disease progre-ssion[C] // AMIA Annual Symposium Proceedings, 2012: 716-725. | 
																													
																						| [22] | Zhao J, Liu Z C, Dontcheva M, et al. MatrixWave: visual comparison of event sequence data[C]. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. New York: ACM Press, 2015: 259-268. |