数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (5): 1-12.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.05.001
doi: 10.11871/jfdc.issn.2096-742X.2024.05.001
龙春1,*(),李丽莎1,2,李婧1,杨帆1,魏金侠1,付豫豪1
收稿日期:
2024-08-13
出版日期:
2024-10-20
发布日期:
2024-10-21
通讯作者:
* 龙春(E-mail: 作者简介:
龙春,中国科学院计算机网络信息中心,正高级工程师,博士生导师。计算机学会安全专委会委员,中国互联网协会青年专家。主要从事智能网络安全保障、安全大数据挖掘与深度分析等方面的科研工作,获得北京市科学技术奖科学技术进步二等奖。基金资助:
LONG Chun1,*(),LI Lisha1,2,LI Jing1,YANG Fan1,WEI Jinxia1,Fu Yuhao1
Received:
2024-08-13
Online:
2024-10-20
Published:
2024-10-21
摘要:
【目的】对机器学习安全推理现有的研究工作进行分析,对未来的研究方向进行展望。【方法】以不同方案的安全假设为分类依据,对采用不同的技术组合、应用于不同机器学习场景的安全推理技术进行分析比较。【结果】目前的方案可实现机器学习的安全推理,但在计算效率、安全保护能力、可扩展性以及实际应用场景的适应性方面存在局限。【局限】受限于能够获取到的资料,未能对所分析的方案在同一基准下进行实验及比较。【结论】根据应用场景进行机器学习安全推理的方案设计,在确保安全的前提下提高可用性并降低开销成本,将是该领域的长期发展方向。
龙春, 李丽莎, 李婧, 杨帆, 魏金侠, 付豫豪. 机器学习安全推理研究综述[J]. 数据与计算发展前沿, 2024, 6(5): 1-12.
LONG Chun, LI Lisha, LI Jing, YANG Fan, WEI Jinxia, Fu Yuhao. Review of Research on Secure Inference in Machine Learning[J]. Frontiers of Data and Computing, 2024, 6(5): 1-12, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.05.001.
表1
应用于传统机器学习的安全推理方案比较"
方案 | 机器学习方法 | 密码学技术 | 运算时间 | 通信开销 | 是否支持扩展为恶意安全假设 |
---|---|---|---|---|---|
[39] | 岭回归 | GC+HE | 很大 | 很大 | √ |
[40] | 线性回归 | GC+HE | 很大 | — | √ |
[41] | 支持向量机 | HE | 较大 | — | |
[42] | 支持向量机 | HE | 较大 | — | |
[43] | 朴素贝叶斯分类 | HE | 较小 | — | |
[44] | 超平面决策、朴素贝叶斯、决策树 | HE | 较大 | 较大 | |
[45] | 决策树、随机森林 | HE+OT | 较小 | 较小 | √ |
[46] | 随机森林 | HE | 较大 | 较大 | |
[47] | 决策树 | SS+OT | 较小 | 较大 | |
[48] | 决策树 | HE/GC/OT | — | — | |
[49] | 决策树 | SS+OT+GC | 较小 | 较大 | |
[50] | 决策树 | SS+OT+GC | 较小 | 较大 | √ |
[4] | 决策树 | HE | 较大 | 较小 | |
[5] | 决策树 | OT+SS | 较小 | 较小 |
表2
应用于深度学习的安全推理方案比较"
方案 | 神经网络规模 | 数据集规模 | 密码学技术 | 通信开销 | 运算时间 |
---|---|---|---|---|---|
crypto-nets[ | 小 | — | Leveled-FHE | — | — |
CryptoNets[ | 小 | MNIST | Leveled-FHE | 很大 | 很大 |
MiniONN[ | 小 | MNIST | HE+GC+SS | 较大 | 较大 |
Chameleon[ | 小 | MNIST、CIFAR-10 | GC+SS | 较大 | 较大 |
Gazelle[ | 小 | MNIST、CIFAR-10 | HE+GC+SS | 较小 | 较小 |
Delphi[ | ResNet32 | CIFAR-10、CIFAR-100 | HE+GC+SS+OT | 较小 | 较小 |
CrypTFlow2[ | SqNet、RN50、DNet121 | ImageNet | SS+HE+OT | 较小 | 较小 |
Cheetah[ | SqNet、RN50、DNet121 | ImageNet | SS+HE+OT | 较小 | 较小 |
[1] | YAO A C. Protocols for secure computations[C]// 23rd annual symposium on foundations of computer science (sfcs 1982). IEEE, 1982: 160-164. |
[2] | SONG L, LIN G, WANG J, et al. Sok: Training machine learning models over multiple sources with privacy preservation[J]. arXiv preprint arXiv: 2012.03 386, 2020. |
[3] | 郭娟娟, 王琼霄, 许新, 等. 安全多方计算及其在机器学习中的应用[J]. 计算机研究与发展, 2021, 58(10): 2163-2186. |
[4] | HAO Y, QIN B, SUN Y. Privacy-preserving decision-tree evaluation with low complexity for communication[J]. Sensors, 2023, 23(5): 2624. |
[5] | JI K, ZHANG B, LU T, et al. UC Secure private branching program and decision tree evaluation[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 20(4): 2836-2848. |
[6] | CHEN X, CHEN X, DONG Y, et al. Roger: A round optimized gpu-friendly secure inference framework[C]// ICC 2024-IEEE International Conference on Communications. IEEE, 2024: 61-66. |
[7] | FAN T, CHEN X, DONG Y, et al. Comet: Communication-efficient batch secure three-party neural network inference with client-aiding[C]// ICC 2024-IEEE International Conference on Communications. IEEE, 2024: 752-757. |
[8] | FENG Q, HE D, LIU Z, et al. SecureNLP: A system for multi-party privacy-preserving natural language processing[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3709-3721. |
[9] | HUANG Z, LU W, HONG C, et al. Cheetah: Lean and fast secure {Two-Party} deep neural network inference[C]// 31st USENIX Security Symposium (USENIX Security 22). 2022: 809-826. |
[10] | DONG Y, CHEN X, JING W, et al. Meteor: improved secure 3-party neural network inference with reducing online communication costs[C]// Proceedings of the ACM Web Conference 2023. 2023: 2087-2098. |
[11] | DONG Y, CHEN X, SONG X, et al. FLEXBNN: fast private binary neural network inference with flexible bit-width[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2382-2397. |
[12] | LU Y, ZHANG B, REN K. Maliciously secure mpc from semi-honest 2 pc in the server-aided model[J]. IEEE Transactions on Dependable and Secure Computing, 2024 (4): 3109-3125. |
[13] | LI Y, XU W. PrivPy: General and scalable privacy-preserving data mining[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1299-1307. |
[14] | SONG L, WANG J, WANG Z, et al. Pmpl: A robust multi-party learning framework with a privileged party[C]// Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. 2022: 2689-2703. |
[15] | MA J, ZHENG Y, FENG J, et al. {SecretFlow-SPU}: A performant and {user-friendly} framework for {privacy-preserving} machine learning[C]// 2023 USENI-X Annual Technical Conference (USENIX ATC 23). 2023: 17-33. |
[16] | 谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7): 2127-2156. |
[17] | HAZAY C, VENKITASUBURAMANIAM M, WE- ISS M. The price of active security in cryptographic protocols[C]// Annual International Conference on the Theory and Applications of Cryptographic Techniqu-es. Cham: Springer International Publishing, 2020: 1 84-215. |
[18] | RABIN M O. How to exchange secrets with oblivious transfer[J]. IACR Cryptol. ePrint Arch, 2005 ( 2005): 187. |
[19] | 曲亚东, 侯紫峰, 韦卫. 基于不经意传输的合同签订协议[J]. 计算机研究与发展, 2003, (4): 615-619. |
[20] | 陈晓洪. 基于安全多方计算的电子投票系统应用研究[D]. 南京理工大学, 2010. |
[21] | 查俊. 安全多方计算在密钥协商中的应用研究[D]. 解放军信息工程大学, 2012. |
[22] | 李宗育, 桂小林, 顾迎捷, 等. 同态加密技术及其在云计算隐私保护中的应用[J]. 软件学报, 2018, 29(7):1830-1851. |
[23] | ACAR A, AKSU H, ULUAGAC A S, et al. A survey on homomorphic encryption schemes: Theory and implementation[J]. ACM Computing Surveys (Csur), 2018, 51(4): 1-35. |
[24] | RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126. |
[25] | ElGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE transactions on information theory, 1985, 31(4): 469-472. |
[26] | PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[C]// International c- onference on the theory and applications of cryptographic techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 223-238. |
[27] | BONEH D, GOH E J, NISSIM K. Evaluating 2-DNF formulas on ciphertexts[C]// Theory of Cryptography: Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005. Proceedings 2. Springer Berlin Heidelberg, 2005: 325-341. |
[28] | GENTRY C. Fully homomorphic encryption using ideal lattices[C]// Proceedings of the forty-first annual ACM symposium on Theory of computing. 2009: 169-178. |
[29] | SMART N P, VERCAUTEREN F. Fully homomorphic encryption with relatively small key and ciphertext sizes[C]// International Workshop on Public Key Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 420-443. |
[30] | VAN Dijk M, GENTRY C, HALEVI S, et al. Fully homomorphic encryption over the integers[C]// Adva-nces in Cryptology-EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30-June 3, 2010. Proceedings 29. Springer Berlin Heidelberg, 2010: 24-43. |
[31] | CORON J S, MANDAL A, NACCACHE D, et al. Fully homomorphic encryption over the integers with shorter public keys[C]// Annual Cryptology Confere-nce. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 487-504. |
[32] | SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613. |
[33] | BEAVER D. Efficient multiparty protocols using circuit randomization[C]// Advances in Cryptology-CR-YPTO’91: Proceedings 11. Springer Berlin Heidelb-erg, 1992: 420-432. |
[34] | BLAKLEY G R. Safeguarding cryptographic keys[C]// Managing requirements knowledge, international workshop on. IEEE Computer Society, 1979: 313-313. |
[35] | GALTON F. Regression towards mediocrity in hereditary stature[J]. The Journal of the Anthropological Institute of Great Britain and Ireland, 1886, 15: 246-263. |
[36] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[37] | QUINLAN J R. C4.5: Programs for machine learning[M]. Morgan Kaufmann, 1993. |
[38] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[39] | NIKOLAENKO V, WEINSBERG U, IOANNIDIS S, et al. Privacy-preserving ridge regression on hund-reds of millions of records[C]// 2013 IEEE symposium on security and privacy. IEEE, 2013: 334-348. |
[40] | GASCÓN A, SCHOPPMANN P, BALLE B, et al. Secure linear regression on vertically partitioned datasets[J]. IACR Cryptol. ePrint Arch. 2016 (2016): 892. |
[41] | RAHULAMATHAVAN Y, PHAN R C W, VELURU S, et al. Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud[J]. IEEE Transactions on Dependable and Secure Computing, 2013, 11(5): 467-479. |
[42] | RAHULAMATHAVAN Y, VELURU S, PHAN R C W, et al. Privacy-preserving clinical decision support system using gaussian kernel-based classification[J]. IEEE journal of biomedical and health informatics, 2013, 18(1): 56-66. |
[43] | LIU X, LU R, MA J, et al. Privacy-preserving patient-centric clinical decision support system on naive Ba- yesian classification[J]. IEEE journal of biomedical and health informatics, 2015, 20(2): 655-668. |
[44] | BOST R, POPA R A, TU S, et al. Machine learning classification over encrypted data[C]// Network and Distributed System Security Symposium. 2014. DOI:10.14722/ndss.2015.23241. |
[45] | WU D J, FENG T, NAEHRIG M, et al. Privately evaluating decision trees and random forests[J]. Proceedings on Privacy Enhancing Technologies, 2016, (4): 335-355. |
[46] | BACKES M, BERRANG P, BIEG M, et al. Identifying personal DNA methylation profiles by genotype inference[C]// 2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 957-976. |
[47] | DE COCK M, DOWSLEY R, HORST C, et al. Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation[J]. IEEE Transactions on Dependable and Secure Computing, 2017, 16(2): 217-230. |
[48] | KISS Á, NADERPOUR M, LIU J, et al. SoK: Modular and efficient private decision tree evaluation[J]. Proceedings on Privacy Enhancing Technologies, 2019, (2): 187-208. |
[49] | TUENO A, KERSCHBAUM F, KATZENBEISSER S. Private evaluation of decision trees using sublinear cost[J]. Proceedings on Privacy Enhancing Technologies, 2019(1): 266-286. |
[50] | MA J P K, TAI R K H, ZHAO Y, et al. Let’s stride blindfolded in a forest: sublinear multi-client decision trees evaluation[C]. Proceedings 2021 Network and Distributed System Security Symposium, 2021. DOI:10.14722/ndss.2021.23166. |
[51] | XIE P, BILENKO M, FINLEY T, et al. Crypto-nets: Neural networks over encrypted data[J]. arXiv preprint arXiv:1412.6181, 2014. |
[52] | GILAD-BACHRACH R, DOWLIN N, LAINE K, et al. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy[C]// International conference on machine learning. PMLR, 20 16: 201-210. |
[53] | LIU J, JUUTI M, LU Y, et al. Oblivious neural network predictions via minionn transformations[C]// Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 2017: 619-631. |
[54] | RIAZI M S, WEINERT C, TKACHENKO O, et al. Chameleon: A hybrid secure computation framework for machine learning applications[C]// Proceedings of the 2018 on Asia conference on computer and communications security. 2018: 707-721. |
[55] | JUVEKAR C, VAIKUNTANATHAN V, CHANDRA-KASAN A. {GAZELLE}:A low latency framework for secure neural network inference[C]// 27th USENIX security symposium (USENIX security 18). 2018: 1651-1669. |
[56] | MISHRA P, LEHMKUHL R, SRINIVASAN A, et al. Delphi: A Cryptographic Inference Service for Neural Networks[C]// USENIX Security Symposium, 2020: 2505-2522. |
[57] | RATHEE D, RATHEE M, KUMAR N, et al. Cryptflow2: Practical 2-party secure inference[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020: 325-342. |
[58] | BAI J, SONG X, ZHANG X, et al. Mostree: malicious secure private decision tree evaluation with sublinear communication[C]// Proceedings of the 39th Annual Computer Security Applications Conference. 2023: 799-813. |
[59] | HAZAY C, ISHAI Y, MARCEDONE A, et al. LevioSA: Lightweight secure arithmetic computation[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2019: 327-344. |
[60] | LEHMKUHL R, MISHRA P, SRINIVASAN A, et al. Muse: Secure inference resilient to malicious clients[C]// 30th USENIX Security Symposium (USENIX Security 21). 2021: 2201-2218. |
[61] | CHANDRAN N, GUPTA D, OBBATTU S L B, et al. {SIMC}:{ML} inference secure against malicious clients at {Semi-Honest} cost[C]// 31st USENIX Security Symposium (USENIX Security 22). 2022: 1361-1378. |
[62] | DONG C, WENG J, LIU J N, et al. Fusion: Efficient and secure inference resilient to malicious servers[C]. Proceedings 2023 Network and Distributed System Security Symposium, 2023. DOI:10.14722/ndss.2023.23199. |
[63] | 贾轩, 白玉真, 马智华. 隐私计算应用场景综述[J]. 信息通信技术与政策, 2022, (5): 45-52. |
[64] | 胡浩. 隐私计算产业的发展及金融行业应用[J]. 银行家, 2023, (3): 108-110. |
[65] | 郑灏. 隐私计算在金融行业数据融合场景中的应用探析[J]. 中国金融电脑, 2022, (6): 90-91. |
[66] | 马龙, 陈奕博. 基于技术的治理: 隐私计算技术赋能政府数据开放的价值与路径研究[J]. 中国行政管理, 2023, 39(9): 105-113. |
[67] | 凡航, 徐葳, 范晓昱, 等. 隐私计算在新型电力系统中的应用分析与展望[J]. 电力系统自动化, 2023, 47(19): 187-199. |
[68] | 肖霞. 基于隐私计算的药物—药物相互作用预测方法研究[D]. 湖南大学, 2023. |
[69] | 辛均益, 陈如梵, 王林, 等. 生物医学大数据中的隐私计算[J]. 医学信息学杂志, 2022, 43(10): 2-7. |
[1] | 郭学兵, 朱小杰, 唐新斋, 杨刚, 侯艳飞, 何洪林. 基于大数据流水线系统的算法模型整合方法研究——以基于机器学习方法的LiDAR数据树木生物量反演为例[J]. 数据与计算发展前沿, 2024, 6(4): 96-105. |
[2] | 何睿琳, 杨欣怡, 孙洪赞, 李晨. 基于图特征的组织病理学图像分析方法的最新发展情况与展望[J]. 数据与计算发展前沿, 2024, 6(2): 101-116. |
[3] | 叶旭, 杜一, 崔文娟, 沈俊杰, 谢靖, 王露笛. 机器学习技术在眼健康领域的应用[J]. 数据与计算发展前沿, 2024, 6(2): 117-133. |
[4] | 申志豪, 李娜, 尹世豪, 杜一, 胡良霖. 基于TPA-Transformer的机票价格预测[J]. 数据与计算发展前沿, 2023, 5(6): 115-125. |
[5] | 危婷, 彭亮, 牛铁, 张宏海. 基于特征分析的HPC失败作业的检测和根因分析[J]. 数据与计算发展前沿, 2023, 5(6): 94-103. |
[6] | 孙一帆, 张锐, 陶杨, 高碧柔, 秦诗涵, 安超. 本地化差分隐私综述[J]. 数据与计算发展前沿, 2023, 5(5): 74-97. |
[7] | 汤世源, 袁野. 基于安全多方计算的隐私保护图查询[J]. 数据与计算发展前沿, 2023, 5(5): 98-106. |
[8] | 田一擎, 程曦, 冯博靖. 企业信用评级计算模型综述[J]. 数据与计算发展前沿, 2023, 5(4): 139-153. |
[9] | 陈美霖, 刘端阳, 徐黎明, 汪洋. 基于机器学习的力场模型研究综述[J]. 数据与计算发展前沿, 2023, 5(4): 27-37. |
[10] | 刘端阳, 魏钟鸣. 有监督学习算法在材料科学中的应用[J]. 数据与计算发展前沿, 2023, 5(4): 38-47. |
[11] | 李妍,何洪波,王闰强. 微博热度预测研究综述[J]. 数据与计算发展前沿, 2023, 5(2): 119-135. |
[12] | 高添,朱教君,张金鑫,孙一荣,于丰源,滕德雄,卢德亮,于立忠,王宗国. 基于新一代信息技术的温带森林生态系统碳通量精准计量[J]. 数据与计算发展前沿, 2023, 5(2): 60-72. |
[13] | 王凡,冯立强,曹荣强. 大数据驱动的海洋人工智能服务平台设计与应用[J]. 数据与计算发展前沿, 2023, 5(2): 73-85. |
[14] | 赵忠斌,蔡满春,芦天亮. 融合多头注意力机制的网络恶意流量检测[J]. 数据与计算发展前沿, 2022, 4(5): 60-67. |
[15] | 危婷,张宏海,蔺小丽,张蕾蕾,王妍,贾金峰. 云服务网站用户复访行为预测模型研究[J]. 数据与计算发展前沿, 2022, 4(3): 124-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||