数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (5): 1-12.

CSTR: 32002.14.jfdc.CN10-1649/TP.2024.05.001

doi: 10.11871/jfdc.issn.2096-742X.2024.05.001

• • 上一篇    下一篇

机器学习安全推理研究综述

龙春1,*(),李丽莎1,2,李婧1,杨帆1,魏金侠1,付豫豪1   

  1. 1.中国科学院计算机网络信息中心,北京 100083
    2.中国科学院大学,北京 100190
  • 收稿日期:2024-08-13 出版日期:2024-10-20 发布日期:2024-10-21
  • 通讯作者: * 龙春(E-mail: anquanip@cnic.cn
  • 作者简介:龙春,中国科学院计算机网络信息中心,正高级工程师,博士生导师。计算机学会安全专委会委员,中国互联网协会青年专家。主要从事智能网络安全保障、安全大数据挖掘与深度分析等方面的科研工作,获得北京市科学技术奖科学技术进步二等奖。
    本文负责论文框架设计、文献分析。
    LONG Chun is a senior engineer in the Computer Network Information Center, Chinese Academy of Sciences. He also serves as a Ph.D. supervisor at the University of Chinese Academy of Sciences. Member of the Security Committee of the Computer Society, and a young expert at the China Internet Association. Engaged in scientific research in the fields of intelligent network security protection, security big data mining, and in-depth analysis. He has won the second prize of the Science and Technology Progress Award from the Beijing Municipal Science and Technology Award.
    In this paper, he is responsible for designing the framework and analyzing the literature.
    E-mail: anquanip@cnic.cn
  • 基金资助:
    国家重点研发计划(2023YFC3304704);中国科学院网络安全和信息化专项(CAS-WX2022GC-04);中国科学院青年创新促进会项目(2022170)

Review of Research on Secure Inference in Machine Learning

LONG Chun1,*(),LI Lisha1,2,LI Jing1,YANG Fan1,WEI Jinxia1,Fu Yuhao1   

  1. 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
    2. University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-08-13 Online:2024-10-20 Published:2024-10-21

摘要:

【目的】对机器学习安全推理现有的研究工作进行分析,对未来的研究方向进行展望。【方法】以不同方案的安全假设为分类依据,对采用不同的技术组合、应用于不同机器学习场景的安全推理技术进行分析比较。【结果】目前的方案可实现机器学习的安全推理,但在计算效率、安全保护能力、可扩展性以及实际应用场景的适应性方面存在局限。【局限】受限于能够获取到的资料,未能对所分析的方案在同一基准下进行实验及比较。【结论】根据应用场景进行机器学习安全推理的方案设计,在确保安全的前提下提高可用性并降低开销成本,将是该领域的长期发展方向。

关键词: 隐私保护机器学习, 机器学习, 数据隐私, 安全多方计算

Abstract:

[Objective] This paper analyzes existing research on secure machine learning inference and proposes future research directions. [Methods] Using the security assumptions of different schemes as a basis for classification, this study conducts analysis and comparison of secure inference techniques that utilize various technological combinations for application in different machine learning contexts. [Results] While current schemes facilitate secure machine learning inference, they exhibit limitations in computational efficiency, security, scalability, and practical applicability. [Limitations] Due to limited data availability, experiments and comparisons of the analyzed schemes under the same benchmark were not conducted. [Conclusions] Designing secure machine learning inference schemes based on application scenarios, ensuring security while improving usability and reducing costs, will be a sustained development direction in this field.

Key words: privacy-preserving machine learning, machine learning, data privacy, secure multi-party computation