数据与计算发展前沿 ›› 2024, Vol. 6 ›› Issue (3): 162-172.

CSTR: 32002.14.jfdc.CN10-1649/TP.2024.03.017

doi: 10.11871/jfdc.issn.2096-742X.2024.03.017

• 技术与应用 • 上一篇    下一篇

基于深度学习的口腔全景片牙齿自动分割方法

寇大治*()   

  1. 上海超级计算中心,上海 201203
  • 收稿日期:2023-10-19 出版日期:2024-06-20 发布日期:2024-06-21
  • 通讯作者: *寇大治(E-mail: dzkou@ssc.net.cn
  • 作者简介:寇大治,上海超级计算中心高级工程师,主要研究领域为高性能计算和人工智能的应用。
    KOU Dazhi, is a senior engineer of Shanghai Supercomputer Center. His research interests include HPC & AI application.
    E-mail: dzkou@ssc.net.cn

Automatic Teeth Segmentation on Dental Panoramic Radiographs with Deep Learning

KOU Dazhi*()   

  1. Shanghai Supercomputer Center, Shanghai 201203, China
  • Received:2023-10-19 Online:2024-06-20 Published:2024-06-21

摘要:

【目的】从口腔全景片中准确分割每颗独立的牙齿对于口腔医学数字化中的疾病诊断和治疗至关重要,然而由于口腔全景片中存在重叠的解剖结构、模糊的边界和伪影,导致单个牙齿的精确分割成为一项具有挑战性的任务。【方法】为了解决这个问题,本文提出一种基于深度学习的方法,用于从口腔全景片中准确、自动地分割每颗独立的牙齿。所提出的方法结合了多个深度神经网络,并利用牙齿形态图和多尺度形态引导注意力机制(MMAM)来精确分割每个牙齿。【结果】在真实临床场景中收集的测试数据集上评估了这一方法的分割性能,并与目前先进的方法进行了比较。结果表明,本文提出的方法在单个牙齿上的分割结果为平均Dice系数94.65%,平均Jaccard系数90.29%,平均召回率94.06%,平均精确度95.62%,与其他方法相比获得了更准确的分割性能。【结论】基于深度学习的口腔全景片自动分割方法可以很好地应用于口腔医学数字化自动病理诊断之中。

关键词: 人工智能, 深度学习, 口腔全景片, 深度神经网络, 牙齿分割

Abstract:

[Objective] Accurate segmentation of individual teeth from dental panoramic radiographs is essential for providing important assistance to the diagnosis and treatment planning of various diseases in digital dentistry. However, accurate segmentation of individual teeth is a challenging task due to the overlapping anatomical structures, blurry boundaries, and artifacts exhibiting in panoramic radiographs. [Methods] To solve these problems, we propose a deep learning-based method for accurate and fully automatic segmentation of individual teeth from the panoramic radiograph. The proposed method combines multiple deep neural networks and utilizes a teeth morphology map together with a multi-scale morphology-guided attention mechanism (MMAM) to precisely segment each tooth. [Results] We evaluate the segmentation performance of our proposed method and compare it with the state-of-the-art methods on testing datasets collected from the real-world clinical scenarios. The segmentation results indicate that our proposed method achieves more accurate segmentation performance (mean Dice: 94.65%, mean Jaccard: 90.29%, mean Recall: 94.06%, and mean Precision: 95.62%). [Conclusions] The proposed method might be applied in the first step of automatic pathology diagnosis from dental panoramic radiographs.

Key words: artificial intelligence, deep learning, dental panoramic radiographs, deep neural network, teeth segmentation