[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2) : 84-90.
|
[2] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[3] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation.[C]. In Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
|
[4] |
ZHANG Z, LIU Q, WANG Y. Road Extraction by Deep Residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
|
[5] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]. European Conference on Computer Vision, 2018: 11211.
|
[6] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-Time Object Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
|
[7] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
doi: 10.1109/TPAMI.2016.2577031
pmid: 27295650
|
[8] |
LIN T, DOLLÁR P, GIRSHICK R, et al. Feature Pyramid Networks for Object Detection.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944.
|
[9] |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2980-2988.
|
[10] |
CHU X, ZHENG A, ZHANG X, et al. Detection in Crowded Scenes: One Proposal, Multiple Predictions.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 12211-12220.
|
[11] |
SHEN D, WU G, SUK H I. Deep Learning in Medical Image Analysis[J]. Annual Review of Biomedical Engineering, 2017, 19(1): 221-248.
|
[12] |
HWANG J J, JUNG Y H, CHO B H, et al. An overview of deep learning in the field of dentistry[J]. Imaging science in dentistry. 2019, 49(1): 1-7.
|
[13] |
MINNEMA J, VAN EIJNATTEN M, HENDRIKSEN A A, et al. Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network[J]. Medical Physics, 2019, 46(11): 5027-5035.
doi: 10.1002/mp.13793
pmid: 31463937
|
[14] |
WANG H, MINNEMA J, BATENBURG K J, et al. Multiclass CBCT ImageSegmentation for Orthodontics with Deep Learning[J]. Journal of Dental Research, 2021, 100(9): 943-949.
|
[15] |
WANG Y, ZHAO L, SONG Z, et al. Organ at Risk Segmentation in Head and Neck CT Images by Using a Two-Stage Segmentation Framework Based on 3D U-Net: in IEEE Access, 10.1109/ACCESS.2019.2944958[P]. 2019, 7: 144591-144602.
|
[16] |
QIU B, GUO J, KRAEIMA J, et al. Automatic segmentation of the mandible from computed tomography scans for 3D virtual surgical planning using the convolutional neural network[J]. Physics in Medicine and Biology, 2019, 64(17): 175020.
|
[17] |
CUI Z, LI C, WNAG W. ToothNet: Automatic Tooth Instance Segmentation and Identification From Cone Beam CT Images[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 6361-6370.
|
[18] |
CUI Z, FANG Y, MEI L, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nature Communications, 2022, 13(1): 2096.
doi: 10.1038/s41467-022-29637-2
pmid: 35440592
|
[19] |
ZHU H, CAO Z, LIAN L, et al. CariesNet: a deep 1eaming approach for segmentation of mu1ti stage caries 1esion from ora1 panoramic x ray image[J]. Neural Computing and Applications, 2022: 1-9.
|
[20] |
YANG H, JO E, KIM H J, et al. Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs[J]. Journal of Clinical Medicine, 2020, 9(6): 1839.
|
[21] |
SUKEGAWA S, YOSHII K, HARA T, et al. Multi-task deep learning model for classification of dental implant brand and treatment stage using dental panoramic radiograph images[J]. Biomolecules, 2021, 11(6): 815.
|
[22] |
KROIS J, EKERT T, MEINHOLD L, et al. Deep learning for the radiographic detection of periodontal bone loss[J]. Scientific Reports, 2019, 9(1): 1-6.
|
[23] |
KIM J, LEE H S, SONG I S, et al. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs[J]. Scientific Reports, 2019, 9(1): 17615.
doi: 10.1038/s41598-019-53758-2
pmid: 31772195
|
[24] |
CHANG H J, LEE S J, YONG T H, et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis[J]. Scientific Reports, 2020, 10(1): 7531.
|
[25] |
JIANG L, CHEN D, CAO Z, et al. A two-stage deep learning architecture for radiographic staging of periodontal bone loss[J]. BMC Oral Health, 2022, 22(1): 106.
doi: 10.1186/s12903-022-02119-z
pmid: 35365122
|
[26] |
TUZOFF D V, TUZOVA L N, BORNSTEINM M, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofacial Radiology, 2019, 48(4): 20180051.
|
[27] |
VINAYAHALINGAM S, XI T, BERGÉ S, et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Scientific Reports, 2019, 9(1): 9007.
doi: 10.1038/s41598-019-45487-3
pmid: 31227772
|
[28] |
KOCH TL, PERSLEV M, IGEL C, et al. Accurate segmentation of dental panoramic radiographs with U-Nets[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019: 15-19.
|
[29] |
CHEN Q, ZHAO Y, LIU Y, et al. MSLPNet: multi-scale location perception network for dental panoramic X-ray image segmentation[J]. Neural Computing and Applications, 2021, 33(16): 10277-10291.
|
[30] |
JADER G, FONTINELI J, RUIZ M, et al. Deep instance segmentation of teeth in panoramic X-ray images[C]. 31st Conference on Graphics, Patterns and Images (SIBGRAPI), 2018: 400-407
|
[31] |
LEE J H, HAN S S, KIM Y H, et al. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 129(6): 635-642.
|
[32] |
LEITE A F, GERVEN A V, WILLEMS H, et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs[J]. Clinical Oral Investigations, 2020, 25(4): 2257-2267.
|
[33] |
CHA J Y, YOON H I, YEO I S, et al. Panoptic segmentation on panoramic radiographs: Deep learning-based segmentation of various structures including maxillary sinus and mandibular canal[J]. Journal of Clinical Medicine, 2021, 10(12): 2577
|
[34] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
|
[35] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning Where to Look for the Pancreas[C]. 1st Conference on Medical Imaging with Deep Learning(MIDL 2018), 2018.
|
[36] |
HU J, SHEN L, ALBANIE G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
doi: 10.1109/TPAMI.2019.2913372
pmid: 31034408
|
[37] |
ROY G, NAVAB N, WACHINGER C. Recalibrating fully convolutional networks with spatial and channel “Squeeze and Excitation” blocks[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 540-549.
|
[38] |
CHOLLET F, Keras[OL]. https://github.com/fchollet/keras.
|
[39] |
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[J/OL]. arXiv:2102.043062021.https://doi.org/10.48550/arXiv.2102.04306.
|