| [1] | 
																						 
											  KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2) : 84-90.
											 											 | 
										
																													
																						| [2] | 
																						 
											  SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. 
											 												 
																									doi: 10.1109/TPAMI.2016.2572683
																																					pmid: 27244717
																							 											 | 
										
																													
																						| [3] | 
																						 
											  RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation.[C]. In Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
											 											 | 
										
																													
																						| [4] | 
																						 
											  ZHANG Z, LIU Q, WANG Y. Road Extraction by Deep Residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
											 											 | 
										
																													
																						| [5] | 
																						 
											  CHEN L C, ZHU Y, PAPANDREOU G,  et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]. European Conference on Computer Vision, 2018: 11211.
											 											 | 
										
																													
																						| [6] | 
																						 
											  REDMON J, DIVVALA S, GIRSHICK R,  et al. You Only Look Once: Unified, Real-Time Object Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
											 											 | 
										
																													
																						| [7] | 
																						 
											  REN S, HE K, GIRSHICK R,  et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
											 												 
																									doi: 10.1109/TPAMI.2016.2577031
																																					pmid: 27295650
																							 											 | 
										
																													
																						| [8] | 
																						 
											  LIN T, DOLLÁR P, GIRSHICK R,  et al. Feature Pyramid Networks for Object Detection.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944.
											 											 | 
										
																													
																						| [9] | 
																						 
											  HE K, GKIOXARI G, DOLLÁR P,  et al. Mask R-CNN.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2980-2988.
											 											 | 
										
																													
																						| [10] | 
																						 
											  CHU X, ZHENG A, ZHANG X,  et al. Detection in Crowded Scenes: One Proposal, Multiple Predictions.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 12211-12220.
											 											 | 
										
																													
																						| [11] | 
																						 
											  SHEN D, WU G, SUK H I. Deep Learning in Medical Image Analysis[J]. Annual Review of Biomedical Engineering, 2017, 19(1): 221-248.
											 											 | 
										
																													
																						| [12] | 
																						 
											  HWANG J J, JUNG Y H, CHO B H,  et al. An overview of deep learning in the field of dentistry[J]. Imaging science in dentistry. 2019, 49(1): 1-7.
											 											 | 
										
																													
																						| [13] | 
																						 
											  MINNEMA J, VAN EIJNATTEN M, HENDRIKSEN A A,  et al. Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network[J]. Medical Physics, 2019, 46(11): 5027-5035. 
											 												 
																									doi: 10.1002/mp.13793
																																					pmid: 31463937
																							 											 | 
										
																													
																						| [14] | 
																						 
											  WANG H, MINNEMA J, BATENBURG K J,  et al. Multiclass CBCT ImageSegmentation for Orthodontics with Deep Learning[J]. Journal of Dental Research, 2021, 100(9): 943-949.
											 											 | 
										
																													
																						| [15] | 
																						 
											  WANG Y, ZHAO L, SONG Z,  et al. Organ at Risk Segmentation in Head and Neck CT Images by Using a Two-Stage Segmentation Framework Based on 3D U-Net: in IEEE Access, 10.1109/ACCESS.2019.2944958[P]. 2019, 7: 144591-144602.
											 											 | 
										
																													
																						| [16] | 
																						 
											  QIU B, GUO J, KRAEIMA J,  et al. Automatic segmentation of the mandible from computed tomography scans for 3D virtual surgical planning using the convolutional neural network[J]. Physics in Medicine and Biology, 2019, 64(17): 175020.
											 											 | 
										
																													
																						| [17] | 
																						 
											  CUI Z, LI C, WNAG W. ToothNet: Automatic Tooth Instance Segmentation and Identification From Cone Beam CT Images[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 6361-6370.
											 											 | 
										
																													
																						| [18] | 
																						 
											  CUI Z, FANG Y, MEI L,  et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nature Communications, 2022, 13(1): 2096. 
											 												 
																									doi: 10.1038/s41467-022-29637-2
																																					pmid: 35440592
																							 											 | 
										
																													
																						| [19] | 
																						 
											  ZHU H, CAO Z, LIAN L,  et al. CariesNet: a deep 1eaming approach for segmentation of mu1ti stage caries 1esion from ora1 panoramic x ray image[J]. Neural Computing and Applications, 2022: 1-9.
											 											 | 
										
																													
																						| [20] | 
																						 
											  YANG H, JO E, KIM H J,  et al. Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs[J]. Journal of Clinical Medicine, 2020, 9(6): 1839.
											 											 | 
										
																													
																						| [21] | 
																						 
											  SUKEGAWA S, YOSHII K, HARA T,  et al. Multi-task deep learning model for classification of dental implant brand and treatment stage using dental panoramic radiograph images[J]. Biomolecules, 2021, 11(6): 815.
											 											 | 
										
																													
																						| [22] | 
																						 
											  KROIS J, EKERT T, MEINHOLD L,  et al. Deep learning for the radiographic detection of periodontal bone loss[J]. Scientific Reports, 2019, 9(1): 1-6.
											 											 | 
										
																													
																						| [23] | 
																						 
											  KIM J, LEE H S, SONG I S,  et al. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs[J]. Scientific Reports, 2019, 9(1): 17615. 
											 												 
																									doi: 10.1038/s41598-019-53758-2
																																					pmid: 31772195
																							 											 | 
										
																													
																						| [24] | 
																						 
											  CHANG H J, LEE S J, YONG T H,  et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis[J]. Scientific Reports, 2020, 10(1): 7531.
											 											 | 
										
																													
																						| [25] | 
																						 
											  JIANG L, CHEN D, CAO Z,  et al. A two-stage deep learning architecture for radiographic staging of periodontal bone loss[J]. BMC Oral Health, 2022, 22(1): 106. 
											 												 
																									doi: 10.1186/s12903-022-02119-z
																																					pmid: 35365122
																							 											 | 
										
																													
																						| [26] | 
																						 
											  TUZOFF D V, TUZOVA L N, BORNSTEINM M,  et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofacial Radiology, 2019, 48(4): 20180051.
											 											 | 
										
																													
																						| [27] | 
																						 
											  VINAYAHALINGAM S, XI T, BERGÉ S,  et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Scientific Reports, 2019, 9(1): 9007. 
											 												 
																									doi: 10.1038/s41598-019-45487-3
																																					pmid: 31227772
																							 											 | 
										
																													
																						| [28] | 
																						 
											  KOCH TL, PERSLEV M, IGEL C,  et al. Accurate segmentation of dental panoramic radiographs with U-Nets[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019: 15-19.
											 											 | 
										
																													
																						| [29] | 
																						 
											  CHEN Q, ZHAO Y, LIU Y,  et al. MSLPNet: multi-scale location perception network for dental panoramic X-ray image segmentation[J]. Neural Computing and Applications, 2021, 33(16): 10277-10291.
											 											 | 
										
																													
																						| [30] | 
																						 
											  JADER G, FONTINELI J, RUIZ M,  et al. Deep instance segmentation of teeth in panoramic X-ray images[C]. 31st Conference on Graphics, Patterns and Images (SIBGRAPI), 2018: 400-407
											 											 | 
										
																													
																						| [31] | 
																						 
											  LEE J H, HAN S S, KIM Y H,  et al. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 129(6): 635-642.
											 											 | 
										
																													
																						| [32] | 
																						 
											  LEITE A F, GERVEN A V, WILLEMS H,  et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs[J]. Clinical Oral Investigations, 2020, 25(4): 2257-2267.
											 											 | 
										
																													
																						| [33] | 
																						 
											  CHA J Y, YOON H I, YEO I S,  et al. Panoptic segmentation on panoramic radiographs: Deep learning-based segmentation of various structures including maxillary sinus and mandibular canal[J]. Journal of Clinical Medicine, 2021, 10(12): 2577
											 											 | 
										
																													
																						| [34] | 
																						 
											  VASWANI A, SHAZEER N, PARMAR N,  et al. Attention is all you need[C]. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
											 											 | 
										
																													
																						| [35] | 
																						 
											  OKTAY O, SCHLEMPER J, FOLGOC L L,  et al. Attention U-Net: Learning Where to Look for the Pancreas[C]. 1st Conference on Medical Imaging with Deep Learning(MIDL 2018), 2018.
											 											 | 
										
																													
																						| [36] | 
																						 
											  HU J, SHEN L, ALBANIE G,  et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. 
											 												 
																									doi: 10.1109/TPAMI.2019.2913372
																																					pmid: 31034408
																							 											 | 
										
																													
																						| [37] | 
																						 
											  ROY G, NAVAB N, WACHINGER C. Recalibrating fully convolutional networks with spatial and channel “Squeeze and Excitation” blocks[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 540-549.
											 											 | 
										
																													
																						| [38] | 
																						 
											 CHOLLET F, Keras[OL]. https://github.com/fchollet/keras. 
											 											 | 
										
																													
																						| [39] | 
																						 
											  CHEN J, LU Y, YU Q,  et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[J/OL]. arXiv:2102.043062021.https://doi.org/10.48550/arXiv.2102.04306. 
											 											 |