[1] |
ARENS C. The Bowyer-Watson algorithm[J]. An efficient Implementation in a Database Environment, 2002: 5-9.
|
[2] |
AURENHAMMER F, KLEIN R. Voronoi Diagrams[J]. Handbook of Computational Geometry, 2000, 5(10): 201-290.
|
[3] |
RAKOTOSAONA M J, GUERRERO P, AIGERMAN N, et al. Learning delaunay surface elements for mesh reconstruction[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 22-31.
|
[4] |
LUO Y, MI Z, TAO W. Deepdt: Learning geometry from delaunay triangulation for surface reconstruction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(3): 2277-2285.
|
[5] |
ZHANG Y, LIU Y, ZHANG H, et al. Multimodal remote sensing image matching combining learning features and Delaunay triangulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.
|
[6] |
MENG W, BO P, ZHANG X, et al. An efficient algorithm for approximate Voronoi diagram construction on triangulated surfaces[J]. Computational Visual Media, 2023, 9(3): 443-459.
|
[7] |
WANG L, HAN J, LU S, et al. Rapid reconstruction of point cloud implicit surface[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0415003.
|
[8] |
FUSCHLER M A, BOLLES R C. Random Consensus: A paradigm for model fitting with applications to image analysis and automated cartigraphy[J]. Communications of the ACM, 1981, 24(6): 381-395.
|
[9] |
CUN X, WANG X G. Research and application of moving least square surface fitting subpixel displacement algorithm[J]. Computer Application Research, 2020, 37(S2): 330-332.
|
[10] |
TAMILMATHI A, CHITHRA P L. Tensor block-wise singular value decomposition for 3D point cloud compression[J]. Multimedia Tools and Applications, 2022, 81(26): 37917-37938.
|
[11] |
MA B, LIU Y, HAN Z. Reconstructing surfaces for sparse point clouds with On-Surface Priors[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 6305-6315.
|
[12] |
KAZHDAN M, BOLITHO M, HOPPE H. Poisson surface reconstruction[C]// Proceedings of the fourth Eurographics Symposium on Geometry processing, 2006, 7(4).
|
[13] |
KAZHDAN M, HOPPE H. Screened poisson surface reconstruction[J]. Acm Transactions on Graphics, 2013, 32(3): 1-13.
|
[14] |
ESTELLERS V, SCOTT M, TEW K, et al. Robust poisson surface reconstruction[C]// Scale Space and Variational Methods in Computer Vision:5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31-June 4, 2015, Proceedings 5. Springer International Publishing, 2015: 525-537.
|
[15] |
HOU F, WANG C, WANG W, et al. Iterative Poisson surface reconstruction (IPSR) for unoriented points[J]. ACM Transactions on Graphics, 2022, 41(4):1-13.
|
[16] |
PREINER R, BOUBEKEUR T, WIMMER M. Gaussian-product subdivision surfaces[J]. ACM Tran-sactions on Graphics (TOG), 2019, 38(4): 1-11.
|
[17] |
LIN S, XIAO D, SHI Z, et al. Surface reconstruction from point clouds without normals by parametrizing the gauss formula[J]. ACM Transactions on Graphics, 2022, 42(2): 1-19.
|
[18] |
PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 165-174.
|
[19] |
ATZMON M, LIPMAN Y. SALD: Sign Agnostic Learning with Derivatives[C]// International Conference on Learning Representations, 2020.
|
[20] |
MI Z, LUO Y, TAO W. Ssrnet: Scalable 3d surface reconstruction network[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 970-979.
|
[21] |
SITZMANN V, MARTEL J, BERGMAN A, et al. Implicit neural representations with periodic activation functions[J]. Advances in neural information processing systems, 2020, 33: 7462-7473.
|
[22] |
BASHER A, BOUTELLIER J. DC-DFFN: Densely connected deep feature fusion network with sign agnostic learning for implicit shape representation[J]. IEEE Access, 2023, 11: 46399-46412.
|
[23] |
YAVARTANOO M, CHUNG J, NESHATAVAR R, et al. 3dias: 3d shape reconstruction with implicit algebraic surfaces. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:12446-12455.
|
[24] |
CHEN C, LIU Y, HAN Z. Latent partition implicit with surface codes for 3d representation[C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 322-343.
|
[25] |
QI C, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 652-660.
|
[26] |
HU P, HO E, MUNTEANU A. 3DBodyNet: fast reconstruction of 3D animatable human body shape from a single commodity depth camera[J]. IEEE Transactions on Multimedia, 2021, 24: 2139-2149.
|
[27] |
DING C, ZHANG L, CHEN H, et al. Sparsity-based Human Activity Recognition with PointNet using a Portable FMCW Radar[J]. IEEE Internet of Things Journal, 2023, 10(11): 10024-10037.
|
[28] |
MILDENHALL B, SRINIVASAN P, TANCIK M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
|
[29] |
RAN Y, ZENG J, HE S, et al. NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction With Implicit Neural Representations[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 1125-1132.
|
[30] |
PARK J J, FLORENCE P, STRAUB J, et al. Deepsdf: Learning continuous signed distance functions for shape representation[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019: 165-174.
|
[31] |
ZHANG R, GUO Z, GAO P, et al. Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training[J]. Advances in neural information processing systems, 2022, 35: 27061-27074.
|
[32] |
CAI X, CAO Y, REN Y, et al. Multi-objective evolutionary 3D face reconstruction based on improved encoder-decoder network[J]. Information Sciences, 2021, 581: 233-248.
|
[33] |
SAYED M, GIBSON J, WATSON J, et al. SimpleRecon: 3D reconstruction without 3D convolutions[C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 1-19.
|
[34] |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
|
[35] |
WU C Y, JOHNSON J, MALIK J, et al. Multiview compressive coding for 3D reconstruction[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 9065-9075.
|
[36] |
MAZZACCA G, KARAMI A, RIGON S, et al. NeRF for heritage 3D reconstruction[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 48( M-2-2023): 1051-1058.
|
[37] |
QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
|
[38] |
QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.
|
[39] |
WANG Q, LEI H, QIAN W. Siamese PointNet: 3D Head Pose Estimation with Local Feature Descriptor[J]. Electronics, 2023, 12(5): 1194.
|
[40] |
HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 4700-4708.
|
[41] |
ZHANG H, PATEL V. Densely connected pyramid dehazing network[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 3194-3203.
|
[42] |
PANDEY A, WANG D L. Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020: 6629-6633.
|
[43] |
ZHANG F, FANG J, WAH B, et al. Deep fusionnet for point cloud semantic segmentation[C]// Computer Vision-ECCV 2020: 16th European Conference, Gla-sgow, UK, August 23-28, 2020, Proceedings, Part XXIV 16. Springer International Publishing, 2020: 644-663.
|
[44] |
CHENG R, RAZANI R, TAGHAVI E, et al. 2-s3net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 12547-12556.
|
[45] |
XIAO A, YANG X, LU S, et al. FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 176: 237-249.
|
[46] |
PASCHALIDOU D, GOOL L, GEIGER A. Learning unsupervised hierarchical part decomposition of 3d objects from a single rgb image[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1060-1070.
|
[47] |
SHARMA G, DASH B, GADELHA M, et al. Surfit: learning to fit surfaces improves few shot learning on point clouds[J]. CoRR 2021, abs/2112.13942.
|
[48] |
LI Y, HAN G, LIU X. Dcnet: Densely connected deep convolutional encoder-decoder network for nasopharyngeal carcinoma segmentation[J]. Sensors, 2021, 21(23): 7877.
|
[49] |
JIANG C, SUD A, MAKADIA A, et al. Local implicit grid representations for 3d scenes[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 6001-6010.
|
[50] |
TAKIKAWA T, LITALIEN J, YIN K, et al. Neural geometric level of detail: Real-time rendering with implicit 3d shapes[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11358-11367.
|
[51] |
SITZMANN V, MARTEL J, BERGMAN A, et al. Implicit neural representations with periodic activation functions[J]. Advances in neural information processing systems, 2020, 33: 7462-7473.
|
[52] |
BOGO F, ROMERO J, LOPER M, et al. FAUST: Dataset and evaluation for 3D mesh registration[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 3794-3801.
|
[53] |
SUN X, WU J, ZHANG X, et al. Pix3d: Dataset and methods for single-image 3d shape modeling[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2974-2983.
|
[54] |
KINGA D, ADAM J. A method for stochastic optimization[C]// International conference on learning representations (ICLR), 2015, 5: 6.
|
[55] |
LIN S, XIAO D, SHI Z, et al. Surface Reconstruction from Point Clouds without Normals by Parametrizing the Gauss Formula[J]. ACM Transactions on Graphics, 2022, 42(2): 1-19.
|