[1] |
DAWSON A, DÜBEN P D, MACLEOD D A, et al. Reliable low precision simulations in land surface models[J]. Climate Dynamics, 2018, 51(7): 2657-2666.
|
[2] |
FABIEN-OUELLET G. Seismic modeling and inversion using half-precision floating point numbers[J]. Geophysics, 2020, 85(3): 1MJ-Z13.
|
[3] |
ABDELFATTAH A, ANZT H, BOMAN E G, et al. A survey of numerical linear algebra methods utilizing mixed-precision arithmetic[J]. International Journal of High Performance Computing Applications, 2021, 35(4): 344-369.
|
[4] |
ZOUNON M, HIGHAM N J, LUCAS C, et al. Performance impact of precision reduction in sparse linear systems solvers[J]. PeerJ Computer Science, 2022, 8: e778.
|
[5] |
BUTTARI A, DONGARRA J, KURZAK J, et al. Using mixed precision for sparse matrix computations to enhance the performance while achieving 64-Bit accuracy[J]. ACM Transactions on Mathematical Software, 2008, 24: 1-22.
|
[6] |
ANZT H, DONGARRA J, FLEGAR G, et al. Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers[J]. Concurrency and Computation: Practice and Experience, 2019, 31(6): e4460.
|
[7] |
FLEGAR G, ANZT H, COJEAN T, et al. Adaptive precision block-jacobi for high performance preconditioning in the ginkgo linear algebra software[J]. ACM Transactions on Mathematical Software, 2021, 47(2): 1-28.
|
[8] |
AHMAD K, SUNDAR H, HALL M. Data-driven mixed precision sparse matrix vector multiplication for GPUs[J]. ACM Transactions on Architecture and Code Optimization, 2019, 16(4):1-24.
|
[9] |
TEZCAN E, TORUN T, KOŞAR F, et al. Mixed and Multi-Precision SpMV for GPUs with Row-wise Precision Selection[C]// IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), Bordeaux, France, November 02-05, 2022. Piscataway: IEEE, 2022: 31-40.
|
[10] |
WILSON K G. Confinement of quarks[J]. Physical Review D, 1974, 10: 2445.
|
[11] |
HABIB S, ROSER R, GERBER R, et al. ASCR/HEP Exascale Requirements Review Report[R/OL]. https://www.osti.gov/biblio/1408335.2016.
|
[12] |
CLARK M A, BABICH R, BARROS K, et al. Solving lattice QCD systems of equations using mixed precision solvers on GPUs[J]. Computer Physics Co-mmunications, 2010, 181(9): 1517-1528.
|
[13] |
SLEIJPEN G L G, VAN DER VORST H A. Reliable updated residuals in hybrid Bi-CG methods[J]. Computing, 1996, 56: 141-163.
|
[14] |
FROMMER A, KAHL K, KRIEG S, et al. Adaptive aggregation-based domain decomposition multigrid for the lattice wilson-dirac operator[J]. SIAMJournal on Scientific Computing, 2014, 36(4): A1581-A1608.
|
[15] |
SAAD Y, SCHULTZ M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAMJournal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
|
[16] |
MOLER C B. Iterative refinement in floating point[J]. Journal of the ACM, 1967, 14(2): 316-321.
|
[17] |
LANGOU J, LANGOU J, LUSZCZEK P, et al. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems) [C]// Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC’06), Tampa, USA, November 11-17, 2006. IEEE, 2006: 50.
|
[18] |
CARSON E, HIGHAM N J. A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems[J]. SIAM Journal on Scientific Computing, 2017, 39(6): A2834-A2856.
|
[19] |
CARSON E, HIGHAM N. Accelerating the solution of linear systems by iterative refinement in three precisions[J]. SIAM Journal on Scientific Computing, 2018, 40(2): A817-A847.
|
[20] |
HAIDAR A, BAYRAKTAR H, TOMOV S, et al. Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear systems[J]. Proceedings of the Royal Society A, 2020, 476: 20200110.
|
[21] |
AMESTOY P, BUTTARI A, HIGHAM N J, et al. Five-precision GMRES-based iterative refinement[J]. MIMS EPrint 2021.5, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
|
[22] |
TURNER K, Walker H F. Efficient high accuracy solutions with GMRES(m)[J]. SIAMJournal on Scientific and Statistical Computing, 1992, 13(3): 815-825.
|
[23] |
LINDQUIST N, LUSZCZEK P, DONGARRA J. Improving the performance of the GMRES method using mixed-precision techniques[M]. Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information Science, vol 1315. Springer, Cham.
|
[24] |
LINDQUIST N, LUSZCZEK P, DONGARRA J. Accelerating restarted GMRES with mixed precision arithmetic[J]. IEEE Transactions on Parallel and Distributed Systems 33(4) 1027-1037.
|
[25] |
LOE J A, GLUSA C A, YAMAZAKI I, et al. Experimental evaluation of multiprecision strategies for GMRES on GPUs[C]// IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 2021.
|
[26] |
SAAD Y. Iterative methods for sparse linear systems 2nd edition[M]. Philadelphia: SIAM, 2003.
|
[27] |
MORGAN R B. A restarted GMRES method augmented with eigenvectors[J]. SIAMJournal on Matrix Analysis and Applications, 1995, 16(4): 1154-1171.
|
[28] |
SAAD Y. A flexible inner-outer preconditioned GMRES algorithm[J]. SIAMJournal on Scientific Computing, 1993, 14(2): 461-469.
|
[29] |
BABOULIN M, BUTTARI A, DONGARRA J, et al. Accelerating scientific computations with mixed precision algorithms[J]. Computer Physics Communications, 2009, 189(12): 2526-2533.
|