数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (5): 3-12.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.05.001

doi: 10.11871/jfdc.issn.2096-742X.2023.05.001

• 专刊:数据要素安全高效流通的关键技术 • 上一篇    下一篇

“东数西算”下的高效数据流通策略研究

沈林江*(),仇树卿,崔超,许俊东,李兆滨,耿晓巧   

  1. 浪潮通信信息系统有限公司,算力网络研究院,山东 济南 250100
  • 收稿日期:2023-04-26 出版日期:2023-10-20 发布日期:2023-10-31
  • 通讯作者: 沈林江(E-mail: shenlj@inspur.com
  • 作者简介:作者简介:沈林江,浪潮通信信息系统有限公司,算力网络研究院院长,公司副总经理,主要从事算力网络相关前沿理论分析、技术研究和产品设计。
    负责系统建设、优化方案设计以及论文总体方向与框架。
    SHEN Linjiang is director of Computing Power Network Research Institute and deputy general manager of Inspur Communication Information System Co., Ltd. Currently, he is mainly engaged in cutting-edge theoretical analysis, technical research and product design related to computing power network.
    In this paper, he is responsible for system construction, optimization scheme design, and the overall direction and framework of the paper.
    E-mail: shenlj@inspur.com

Research on Efficient Data Flow Management under “East-West Computing Resource Transfer”

SHEN Linjiang*(),QIU Shuqing,CUI Chao,XU Jundong,LI Zhaobin,GENG Xiaoqiao   

  1. Computing Power Network Research Institute, Inspur Communication Information System Co., Ltd., Jinan, Shandong 250100, China
  • Received:2023-04-26 Online:2023-10-20 Published:2023-10-31

摘要:

【目的】 东数西算场景下的数据流通策略需要综合考虑能耗、成本、时延等各类系统优化目标,本文采用深度强化学习算法实现高效的数据分级和流转策略。【方法】 首先对东数西算场景下的数据要素流通系统架构和关键业务逻辑进行分析,并基于数据分类分级、数据传输、数据服务等关键流程的控制因素,融合多类业务优化目标,构建系统优化的通用数学模型,最后通过深度强化学习实现问题求解和策略优化。【结果】 通过系统仿真,与多种基线算法进行对比,验证了本文方法在收敛性、系统长期收益、目标均衡等方面的优势。【局限】 本文中方法对相关系统进行了合理的简化建模,在生产中需要基于现有方法,结合实际系统进行策略分析和回报函数定义,以进一步提升方法的推广能力和应用效果。【结论】 东数西算等复杂场景下,综合考虑多种业务优化目标,并通过深度强化学习等算法对数据流通策略进行优化,能够在保障服务质量的基础上,有效提升系统自身性能。

关键词: 东数西算, 数据流通, 深度强化学习

Abstract:

[Objective] The data element circulation strategy under the East-West Computing Resource Transfer” project needs to consider comprehensively various system optimization objectives, such as energy consumption, cost, and latency. This paper uses the deep reinforcement learning algorithm to implement an efficient data classification and circulation strategy. [Methods] Firstly, the data element circulation system architecture and key business logic under the “East-West Computing Resource Transfer” project are analyzed, and based on the control factors of key processes such as data classification and grading, data transmission, and data services, multiple types of business optimization goals are integrated to construct a general mathematical model for system optimization, and finally problem-solving and strategy optimization are realized through deep reinforcement learning. [Results] Through system simulation and comparison with multiple baseline algorithms, the advantages of the proposed method in convergence, long-term system benefit, and target equilibrium are verified. [Limitations] The proposed method in this paper simplifies the modeling of the relevant system. Further improvement can be achieved by combining the existing methods with practical system analysis and defining reward functions based on the actual system. [Conclusions] In complex scenarios like “East-West Computing Resource Transfer”, comprehensive consideration of multiple business optimization goals and optimizing data element circulation strategies through algorithms such as deep reinforcement learning can effectively improve the performance of the system while ensuring service quality.

Key words: East-West Computing Resource Transfer, data flow management, deep reinforcement learning