数据与计算发展前沿 ›› 2020, Vol. 2 ›› Issue (6): 30-41.

doi: 10.11871/jfdc.issn.2096-742X.2020.06.004

• 专题:高性能计算在行业领域的特色应用 • 上一篇    下一篇

海洋科学中尺度涡的计算机视觉检测和分析方法

沈飙(),陈扬,杨琛,刘博文   

  1. 中国海洋大学,山东 青岛 266100
  • 收稿日期:2020-08-08 出版日期:2020-12-20 发布日期:2020-12-29
  • 通讯作者: 沈飙
  • 作者简介:沈飙,中国海洋大学,物理海洋教育部重点实验室计算中心,工程师,从事高性能计算方面的管理、维护与应用研究,具有丰富的海洋数值模式的编译、运行、应用支持等经验。本文负责总体统稿,提供作业平台和算法思路。
    SHEN Biao is an engineer of Key Laboratory of physical Oceanography, MOE, China. He has been engaged in the management, maintenance and application research of HPC with rich experience in compiling, running and supporting Marine numerical models.In this paper, he is responsible for the overall draft, providing the operation platform and algorithm ideas.E-mail:shenbiao@ouc.edu.cn|陈扬,中国海洋大学信息科学与工程学院计算机科学与技术专业在读学士。本文负责在集群上开展实验,撰写初稿。
    CHEN Yang is an undergraduate student majored in computer science and technology, School of information science and engineering, Ocean University of China. In this paper, he completed the first draft and parts of experiments and analysis.E-mail: chenyang8484@ouc.edu.cn|杨琛,中国海洋大学海洋与大气学院,硕士研究生。本文负责针对PAC竞赛调整实验,挖掘摘要引言的内容。
    YANG Chen is a master student majored in marine science in the school of ocean and atmosphere, Ocean University of China. In this paper, he is responsible for the experimental adjustment for the PAC competition and composition of the abstract and introduction.E-mail: qdyangchen@163.com|刘博文,中国海洋大学海洋与大气学院,硕士研究生。本文负责后期修正文稿,整理实验结果,分析结论。
    LIU Bowen is a master student majored in marine science from the school of ocean and atmosphere, Ocean University of China.In this paper, he is responsible for revising the manuscript, sorting out the experimental results and analyzing the conclusions.E-mail: 15610009099@163.com
  • 基金资助:
    自然资源部海洋灾害预报技术重点实验室开放基金项目“深度Gabor散射网络及其在海洋中尺度涡检测中的应用”(LOMF 1802)

Computer Vision Detection and Analysis of Mesoscale Eddies in Marine Science

SHEN Biao(),CHEN Yang,YANG Chen,LIU Bowen   

  1. Ocean University of China, Qingdao, Shandong 266100, China
  • Received:2020-08-08 Online:2020-12-20 Published:2020-12-29
  • Contact: SHEN Biao

摘要:

【目的】中尺度涡是海洋科学领域一个重要的研究课题,在人工智能领域中深度神经网络的技术支持下,将计算机视觉与海洋领域相结合,促进中尺度涡智能识别技术的应用和发展。【方法】基于Mask-RCNN算法,将深度学习中的目标检测算法应用于中尺度涡检测,结合多模态卫星遥感图像数据,对海洋中的中尺度涡进行识别、分类和分割。【结果】传统的中尺度涡检测方法只能检测中尺度涡的位置和大小,本文算法利用多模态信息进行定位、分类和实例分割,有效提取中尺度涡的特征,可以获得更高的检测准确率。【结论】人工智能在中尺度涡识别和追踪问题上具有重大的应用潜力,但涡旋检测的评价指标仍需进一步完善,促进深度学习检测中尺度涡技术向快速高效的方向发展。

关键词: 中尺度涡, 目标检测算法, 深度学习, 多模态数据融合

Abstract:

[Objective] Mesoscale eddy is an important research topic in the field of marine science. With the support of deep neural network in the artificial intelligence field, computer vision is combined with ocean field technology to promote the application and development of intelligent recognition technology of mesoscale eddy. [Methods] Based on Mask-RCNN algorithm, a deep learning object detection algorithm is applied to the detection of mesoscale eddies. Combined with the multi-modal satellite remote sensing image data, the mesoscale eddies in the ocean can be identified, classified and segmented. [Results] The traditional method can only detect the location and size of mesoscale eddies. In this paper, multi-modal information is adopted to locate, classify and segment the mesoscale eddies. [Conclusions] Artificial intelligence has great application potential in recognizing and tracking mesoscale eddies. But the evaluation indexes of eddy detection still need to be further improved to promote the rapid and efficient development of deep learning detection of mesoscale eddies.

Key words: mesoscale eddy, object detection, deep learning, multimodal data fusion