[1] |
Cunha I, Teixeira R, Veitch D, et al. Predicting and tracking internet path changes[C]// Proceedings of the ACM SIGCOMM 2011 conference. 2011: 122-133. http://www.stats.gov.cn/tjsj/tjgb/rdpcgb/qgkjjftrtjgb/.
|
[2] |
Tune P, Roughan M. Spatiotemporal traffic matrix synconfproc[C]// Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 2015: 579-592.
|
[3] |
Adams A, Lapukhov P, Zeng J H. NetNORAD: Troubleshooting networks via end-to-end probing[Z]. Facebook White Paper, 2016.
|
[4] |
Guo C, Yuan L, Xiang D, et al. Pingmesh: A large-scale system for data center network latency measurement and analysis[C]// Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 2015: 139-152.
|
[5] |
Peng Y, Yang J, Wu C, et al. deTector: a topology-aware monitoring system for data center networks[C]// 2017 {USENIX} Annual Technical Conference({USENIX}{ATC} 17). 2017: 55-68.
|
[6] |
Xie K, Wang L, Wang X, et al. Sequential and adaptive sampling for matrix completion in network monitoring systems[C]// 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015: 2443-2451.
|
[7] |
Xie K, Li X, Wang X, et al. Fast tensor factorization for accurate internet anomaly detection[J]. IEEE/ACM transactions on networking, 2017,25(6):3794-3807.
|
[8] |
Guide to reliable internet services and applications[M]. Springer Science & Business Media, 2010.
|
[9] |
Lakhina A, Papagiannaki K, Crovella M, et al. Structural analysis of network traffic flows[C]// Proceedings of the joint international conference on Measurement and modeling of computer systems. 2004: 61-72.
|
[10] |
Zhang Y, Roughan M, Lund C, et al. Estimating point-to-point and point-to-multipoint traffic matrices: An information-theoretic approach[J]. IEEE/ACM Transactions on networking, 2005,13(5):947-960.
|
[11] |
Barford P, Kline J, Plonka D, et al. A signal analysis of network traffic anomalies[C]// Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment. 2002: 71-82.
|
[12] |
Chen Y C, Qiu L, Zhang Y, et al. Robust network compressive sensing[C]// Proceedings of the 20th annual international conference on Mobile computing and networking. 2014: 545-556.
|
[13] |
Du R, Chen C, Yang B, et al. Vanet based traffic estimation: A matrix completion approach[C]// 2013 IEEE Global Communications Conference (GLOBECOM). IEEE, 2013: 30-35.
|
[14] |
Gürsun G, Crovella M. On traffic matrix completion in the internet[C]// Proceedings of the 2012 Internet Measurement Conference. 2012: 399-412.
|
[15] |
Mardani M, Giannakis G B. Robust network traffic estimation via sparsity and low rank[C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013: 4529-4533.
|
[16] |
Roughan M, Zhang Y, Willinger W, et al. Spatio-temporal compressive sensing and internet traffic matrices (extended version)[J]. IEEE/ACM Transactions on Networking, 2011,20(3):662-676.
|
[17] |
Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization[J]. Inverse Problems, 2011,27(2):025010.
|
[18] |
Liu J, Musialski P, Wonka P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE transactions on pattern analysis and machine intelligence, 2012,35(1):208-220.
doi: 10.1109/TPAMI.2012.39
pmid: 22271823
|
[19] |
Xie K, Li X, Wang X, et al. Graph based tensor recovery for accurate internet anomaly detection[C]// IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2018: 1502-1510.
|
[20] |
Dai K, Wang D, Lu H, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4670-4679.
|
[21] |
Yu H X, Zheng W S, Wu A, et al. Unsupervised person re-identification by soft multilabel learning[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 2148-2157.
|
[22] |
Jia W, Dai D, Xiao X, et al. ARNOR: Attention Regularization based Noise Reduction for Distant Supervision Relation Classification[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 1399-1408.
|
[23] |
Yang A, Wang Q, Liu J, et al. Enhancing pre-trained language representations with rich knowledge for machine reading comprehension[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 2346-2357.
|
[24] |
Pham N Q, Nguyen T S, Niehues J, et al. Very deep self-attention networks for end-to-end speech recognition[J]. arXiv preprint arXiv: 1904. 13377, 2019.
|
[25] |
Zheng S, Liu G, Suo H, et al. Autoencoder-based Semi-Supervised Curriculum Learning For Out-of-domain Speaker Verification[C]// INTERSPEECH, 2019: 4360-4364.
|
[26] |
Kramer M A. Autoassociative neural networks[J]. Computers & chemical engineering, 1992,16(4):313-328.
|
[27] |
Lakhina A, Crovella M, Diot C. Diagnosing network-wide traffic anomalies[J]. ACM SIGCOMM computer communication review, 2004,34(4):219-230.
|
[28] |
Vardi Y. Network tomography: Estimating source-destination traffic intensities from link data[J]. Journal of the American statistical association, 1996,91(433):365-377.
|
[29] |
Liu B, Niu D, Li Z, et al. Network latency prediction for personal devices: Distance-feature decomposition from 3D sampling[C]// 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015: 307-315.
|
[30] |
Zhu R, Liu B, Niu D, et al. Network latency estimation for personal devices: A matrix completion approach[J]. IEEE/ACM Transactions on Networking, 2016,25(2):724-737.
|
[31] |
Cichocki A, Mandic D, De Lathauwer L, et al. Tensor decompositions for signal processing applications: From two-way to multiway component analysis[J]. IEEE signal processing magazine, 2015,32(2):145-163.
|
[32] |
Obozinski G, Taskar B, Jordan M I. Joint covariate selection and joint subspace selection for multiple classification problems[J]. Statistics and Computing, 2010,20(2):231-252.
|
[33] |
Sun J, Papadimitriou S, Lin C Y, et al. Multivis: Content-based social network exploration through multi-way visual analysis[C]// Proceedings of the 2009 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2009: 1064-1075.
|
[34] |
Acar E, Dunlavy D M, Kolda T G, et al. Scalable tensor factorizations for incomplete data[J]. Chemometrics and Intelligent Laboratory Systems, 2011,106(1):41-56.
|
[35] |
Acar E, Dunlavy D M, Kolda T G. A scalable optimization approach for fitting canonical tensor decompositions[J]. Journal of Chemometrics, 2011,25(2):67-86.
|
[36] |
Xie K, Wang L, Wang X, et al. Accurate recovery of internet traffic data: A sequential tensor completion approach[J]. IEEE/ACM transactions on networking, 2018,26(2):793-806.
|
[37] |
Xie K, Peng C, Wang X, et al. Accurate recovery of internet traffic data under variable rate measurements[J]. IEEE/ACM transactions on networking, 2018,26(3):1137-1150.
doi: 10.1109/TNET.2018.2819504
|
[38] |
Xie K, Wang X, Wang X, et al. Accurate Recovery of Missing Network Measurement Data With Localized Tensor Completion[J]. IEEE/ACM Transactions on Networking, 2019,27(6):2222-2235.
doi: 10.1109/TNET.90
|
[39] |
Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition[J]. Psychometrika, 1970,35(3):283-319.
doi: 10.1007/BF02310791
|
[40] |
Harshman R A. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis[J]. UCLA Working Papers in Phonetics, 1970,16(1):1-84.
|
[41] |
Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]// Proceedings of the 27th international conference on machine learning (ICML-10). 2010: 807-814.
|
[42] |
Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv preprint arXiv:1607.06450, 2016.
|
[43] |
The Abilene Observatory Data Collections[Z]. http://abilene.internet2.edu/observatory/data-collections.html, 2004.
|
[44] |
Uhlig S, Quoitin B, Lepropre J, et al. Providing public intradomain traffic matrices to the research community[J]. ACM SIGCOMM Computer Communication Review, 2006,36(1):83-86.
doi: 10.1145/1111322
|
[45] |
Zheng Z, Lyu M R. Ws-dream: A distributed reliability assessment mechanism for web services[C]// 2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN). IEEE, 2008: 392-397.
|
[46] |
Bader B W, Kolda T G. MATLAB Tensor Toolbox Version 2.6. Available online.(February 2015)[Z]. URL http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html, 2015.
|
[47] |
Wen Z, Yin W, Zhang Y. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[J]. Mathematical Programming Computation, 2012,4(4):333-361.
doi: 10.1007/s12532-012-0044-1
|