数据与计算发展前沿 ›› 2020, Vol. 2 ›› Issue (3): 55-65.

doi: 10.11871/jfdc.issn.2096-742X.2020.03.005

所属专题: 下一代互联网络技术与应用

• 专刊:下一代互联网络技术与应用(上) • 上一篇    下一篇

网络性能数据恢复算法

欧阳与点(),谢鲲()   

  1. 湖南大学信息科学与工程学院,湖南 长沙 410006
  • 收稿日期:2020-04-10 出版日期:2020-06-20 发布日期:2020-08-19
  • 通讯作者: 谢鲲
  • 作者简介:欧阳与点,湖南大学信息科学与工程学院,博士研究生。主要研究方向为矩阵填充、张量填充和人工智能。
    本文主要承担模型设计搭建与实验验证。
    Ouyang Yudian is currently a Ph.D. candidate at the College of Computer Science and Electronics Engineering, Hunan University. Her research interests include matrix completion, tensor completion and AI.
    In this paper she is mainly responsible for framework design and construction with experimental verification.
    E-mail: yudian@hnu.edu.cn|谢鲲,湖南大学以及网络安全鹏程实验室研究中心,教授。已经在计算机主要期刊和会议论文上发表了60多篇文章,包括期刊IEEE / ACM TON,IEEE TMC,IEEE TC,IEEE TWC和IEEE TSC,以及会议SIGMOD,INFOCOM,ICCDS,SECON和IWQoS。主要研究领域为网络测量、网络安全、大数据和人工智能。
    本文主要承担工作为文献研究和模型概述。
    Xie Kun, is currently a Professor of Hunan University and the Cyberspace Security Research Center, Peng Cheng Laboratory. She has published over 60 articles in major journals and conference proceedings, including journals IEEE/ACM TON, IEEE TMC, IEEE TC, IEEE TWC, and IEEE TSC, and conferences, SIGMOD, INFOCOM, ICDCS, SECON, and IWQoS. Her research interests include network measurement, network security, big data, and AI. In this paper she is mainly responsible for literature research and model overview.
    E-mail: xiekun@hnu.edu.cn
  • 基金资助:
    国家自然科学基金(61972144)

An Algorithm for Network Monitoring Data Recovery

Ouyang Yudian(),Xie Kun()   

  1. The College of Computer Science and Electronics Engineering, Hunan University, Changsha, Hunan 410006, China
  • Received:2020-04-10 Online:2020-06-20 Published:2020-08-19
  • Contact: Xie Kun

摘要:

【目的】本文将部分观测的网络性能数据建模为张量,借助于深度神经网络强大的特征提取能力来恢复缺失数据。【方法】与依赖于张量分解的传统张量填充不同,本文基于深度卷积自编码器设计了一种新的张量填充方案(DCAE)。它可以处理稀疏矩阵数据的输入,学习数据的复杂关系,并重构缺失数据。【结果】我们使用了三个公开的真实世界网络性能数据集进行了广泛的实验,实验结果表明,即使采样率非常低,DCAE也可以显著提高恢复精度。【局限】由于网络攻击等,网络性能数据不可避免存在异常,影响恢复结果,未来希望对异常数据进行处理达到鲁棒的恢复效果。【结论】所提模型可以捕获网络性能数据之间的非线性关系,具有高数据恢复精度,可以为高层网络应用恢复缺失数据。

关键词: 张量填充, 稀疏网络测量, 卷积神经网络, 自编码器, 数据恢复

Abstract:

[Objective] This paper models the partially observed network performance data as a tensor, and exploits powerful ability of the deep neural network in feature extraction to recover the missing data. [Methods] Different from traditional tensor completion which relies on tensor decomposition, we design a novel tensor completion scheme based on Deep Convolution Autoencoder (DCAE). DCAE can handle the sparse matrix input, learn the complex relationship of data, and reconstruct the missing data. [Results] We have conducted extensive experiments using three publicly real-world network performance datasets. Our results demonstrate that DCAE can achieve significantly better recovery accuracy even when the sampling ratio is very low. [Limitations] Due to network attacks, network performance data may have unavoidable anomalies, which will deteriorate the recovery accuracy. In the future, we hope that the abnormal data will be able to be processed for a more robust recovery. [Conclusions] The proposed model can capture the non-linear relationship between the network performance data, achieve high data recovery accuracy, and recover missing data for advanced network applications.

Key words: tensor completion, sparse network monitoring, convolutional neural network, autoencoder, data recovery