[1] |
CHUA M, WEE J, HUI E, et al. Nasopharyngeal carcinoma[J]. Lancet, 2016, 387: 1012-1024.
doi: S0140-6736(15)00055-0
pmid: 26321262
|
[2] |
LIU K, XIA W, QIANG M, et al. Deep learning pathological microscopic features in endemic nasopharyngeal cancer: Prognostic value and protentional role for individual induction chemotherapy[J]. Cancer Medicine, 2020, 9(4): 1298-1306.
doi: 10.1002/cam4.2802
pmid: 31860791
|
[3] |
SU Z Y, SIAK P Y, LWIN Y Y, et al. Epidemiology of nasopharyngeal carcinoma: current insights and future outlook[J]. Cancer and Metastasis Reviews, 2024: 1-21.
|
[4] |
CHANG E T, YE W, ZENG Y X, et al. The evolving epidemiology of nasopharyngeal carcinoma[J]. Cancer Epidemiology, Biomarkers & Prevention, 2021, 30(6): 1035-1047.
|
[5] |
CHAN A T C, HUI E P, NGAN R K C, et al. Analysis of plasma Epstein-Barr virus DNA in nasopharyngeal cancer after chemoradiation to identify high-risk patients for adjuvant chemotherapy: a randomized controlled trial[J]. Journal of Clinical Oncology, 2018, 36(31): 3091-3100.
|
[6] |
LI W, DUAN X, CHEN X, et al. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma[J]. Frontiers in Immunology, 2023, 13: 1079515.
|
[7] |
朋飞吴, 智杨, 青晏李, 等. 肿瘤微环境中细胞代谢相互作用的研究进展[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(2): 482.
|
[8] |
LIU X, SONG L, LIU S, et al. A review of deep-learning-based medical image segmentation methods[J]. Sustainability, 2021, 13(3): 1224.
|
[9] |
RONNEBERGER O, FISCHER P, BROX T, et al. U-net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference. Berlin: Springer International Publishing, 2015: 234-241.
|
[10] |
BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
|
[11] |
XU R, WANG Z, LIU Z, et al. Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention[J]. BioMed Research International, 2022, 2022(1): 7966553.
|
[12] |
SHI J, YE Y, ZHU D, et al. Comparative analysis of pulmonary nodules segmentation using multiscale residual U-Net and fuzzy C-means clustering[J]. Computer Methods and Programs in Biomedicine, 2021, 209: 10633.
|
[13] |
DIAO S, HOU J, YU H, et al. Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning[J]. The American Journal of Pathology, 2020, 8(190): 1691-1700.
|
[14] |
WANG J, CHUNG A C S. High-order oriented cylindrical flux for curvilinear structure detection and vessel segmentation[C]// International Conference on Information Processing in Medical Imaging. Berlin:Springer International Publishing, 2019: 479-491.
|
[15] |
SARAEI M, LIU S. Attention-based deep learning approaches in brain tumor image analysis: A mini review[J]. Frontiers in Health Informatics, 2023, 12: 1-9.
|
[16] |
MOU L, ZHAO Y, CHEN L, et al. CS-Net: Channel and spatial attention network for curvilinear structure segmentation[C]// Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference. Berlin: Springer International Publishing, 2019: 721-730.
|
[17] |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Piscataway, NJ: The Institute of Electrical and Electronics Engineers, 2019: 3146-3154.
|
[18] |
WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV). Berlin:Springer International Publishing, 2018: 3-19.
|
[19] |
ZHANG H, DANA K, SHI J, et al. Context encoding for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7151-7160.
|
[20] |
ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-Attention Generative Adversarial Networks[C]// Proceedings of the 36th International Conference on Machine Learning, PMLR, 2019, 97: 7354-7363.
|
[21] |
JIE H, LI S, GANG S. Squeeze-and-Excitation Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7132-7141.
|