[1] |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229-263.
|
[2] |
NICHOLSON A G, TSAO M S, BEASLEY M B, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015[J]. Journal of Thoracic Oncology, 2022, 17(3): 362-387.
|
[3] |
PIKOR L A, RAMNARINE V R, LAM S, et al. Genetic alterations defining NSCLC subtypes and their therapeutic implications[J]. Lung Cancer, 2013, 82(2): 179-189.
doi: 10.1016/j.lungcan.2013.07.025
pmid: 24011633
|
[4] |
XIE X, CHEN G, SONG W. Analysis of immune subtypes in non-small-cell lung cancer based on TCGA database[J]. Medicine, 2023, 102(19): e33686.
|
[5] |
GRANT M J, HERBST R S, GOLDBERG S B. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC[J]. Nature Reviews Clinical oncology, 2021, 18(10): 625-644.
doi: 10.1038/s41571-021-00520-1
pmid: 34168333
|
[6] |
PATEL P, ALRIFAI D, MCDONALD F, et al. Beyond chemoradiotherapy: improving treatment outcomes for patients with stage III unresectable non-small-cell lung cancer through immuno-oncology and durvalumab (Imfinzi®▼, AstraZeneca UK Limited)[J]. British Journal of Cancer, 2020, 123(Suppl 1): 18-27.
doi: 10.1038/s41416-020-01071-5
pmid: 33293672
|
[7] |
ZHAO L, LEE V H, NG M K, et al. Molecular subtyping of cancer: current status and moving toward clinical applications[J]. Briefings in Bioinformatics, 2019, 20(2): 572-584.
doi: 10.1093/bib/bby026
pmid: 29659698
|
[8] |
THOMAS A, LIU S V, SUBRAMANIAM D S, et al. Refining the treatment of NSCLC according to histological and molecular subtypes[J]. Nature Reviews Clinical Oncology, 2015, 12(9): 511-526.
doi: 10.1038/nrclinonc.2015.90
pmid: 25963091
|
[9] |
COLLING R, PITMAN H, OIEN K, et al. Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice[J]. The Journal of Pathology, 2019, 249(2): 143-150.
doi: 10.1002/path.5310
pmid: 31144302
|
[10] |
COUDRAY N, OCAMPO P S, SAKELLAROPOULOS T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nature Medicine, 2018, 24(10): 1559-1567.
doi: 10.1038/s41591-018-0177-5
pmid: 30224757
|
[11] |
ZHENG Y, GINDRA R H, GREEN E J, et al. A graph-transformer for whole slide image classification[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 3003-3015.
|
[12] |
WANG X, YANG S, ZHANG J, et al. Transformer-based unsupervised contrastive learning for histopathological image classification[J]. Medical Image Analysis, 2022, 81: 102559.
|
[13] |
XING F, YANG L. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review[J]. IEEE Reviews in Biomedical Engineering, 2016, 9: 234-263.
doi: 10.1109/RBME.2016.2515127
pmid: 26742143
|
[14] |
ALI S, MADABHUSHI A. An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery[J]. IEEE Transactions on Medical Imaging, 2012, 31(7): 1448-1460.
doi: 10.1109/TMI.2012.2190089
pmid: 22498689
|
[15] |
IRSHAD H, VEILLARD A, ROUX L, et al. Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential[J]. IEEE Reviews in Biomedical Engineering, 2013, 7: 97-114.
|
[16] |
GLOTSOS D, SPYRIDONOS P, CAVOURAS D, et al. Automated segmentation of routinely hematoxylin-eosin-stained microscopic images by combining support vector machine clustering and active contour models[J]. Analytical and Quantitative Cytology and Histology, 2004, 26(6): 331-340.
pmid: 15678615
|
[17] |
FATAKDAWALA H, XU J, BASAVANHALLY A, et al. Expectation-maximization-driven geodesic active contour with overlap resolution (emagacor): Application to lymphocyte segmentation on breast cancer histopathology[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(7): 1676-1689.
|
[18] |
PÖLLÄNEN I, BRAITHWAITE B, HAATAJA K, et al. Current analysis approaches and performance needs for whole slide image processing in breast cancer diagnostics[C]// 2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE, 2015: 319-325.
|
[19] |
TAO L W, HWU A F, HUANG Y J, et al. End-to-end performance optimization for training streaming convolutional neural networks using billion-pixel whole-slide images[C]// 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021: 1127-1137.
|
[20] |
LENG H, DENG R, BAO S, et al. High-performance data management for whole slide image analysis in digital pathology[C]// Medical Imaging 2024:Digital and Computational Pathology, 2024: 238-244.
|
[21] |
MUKHERJEE L, BUI H D, KEIKHOSRAVI A, et al. Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images[J]. Journal of Biomedical Optics, 2019, 24(12): 126003-126003.
|
[22] |
DING S, LI J, WANG J, et al. Multi-scale efficient graph-transformer for whole slide image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2023.
|
[23] |
YU J G, WU Z, MING Y, et al. Bayesian collaborative learning for whole-slide image classification[J]. IEEE Transactions on Medical Imaging, 2023, 42(6): 1809-1821.
|
[24] |
JUNG I, KIM M, RHEE S, et al. MONTI: a multi-omics non-negative tensor decomposition framework for gene-level integrative analysis[J]. Frontiers in Genetics, 2021, 12: 682841.
|
[25] |
CHEN L, ZENG H, XIANG Y, et al. Histopathological images and multi-omics integration predict molecular characteristics and survival in lung adenocarcinoma[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 720110.
|
[26] |
DUAN R, GAO L, GAO Y, et al. Evaluation and comparison of multi-omics data integration methods for cancer subtyping[J]. PLoS Computational Biology, 2021, 17(8): e1009224.
|
[27] |
FRANCESCATTO M, CHIERICI M, REZVAN DEZFOOLI S, et al. Multi-omics integration for neuroblastoma clinical endpoint prediction[J]. Biology Direct, 2018, 13: 1-12.
|
[28] |
NICORA G, VITALI F, DAGLIATI A, et al. Integrated multi-omics analyses in oncology: a review of machine learning methods and tools[J]. Frontiers in Oncology, 2020, 10: 1030.
doi: 10.3389/fonc.2020.01030
pmid: 32695678
|
[29] |
SALTZ J, GUPTA R, HOU L, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images[J]. Cell Reports, 2018, 23(1): 181-193.
doi: S2211-1247(18)30447-9
pmid: 29617659
|
[30] |
LI N, HU M, ZHANG D, et al. Different characteristics of tumor immune microenvironment between LUSC and LUAD[J]. Cancer Research, 2022, 82(12_Supplement): 6122-6122.
|
[31] |
MARCOLINI A, BUSSOLA N, ARBITRIO E, et al. histolab: A Python library for reproducible Digital Pathology preprocessing with automated testing[J]. SoftwareX, 2022, 20: 101237.
|
[32] |
MO Q, SHEN R, GUO C, et al. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data[J]. Biostatistics, 2018, 19(1): 71-86.
doi: 10.1093/biostatistics/kxx017
pmid: 28541380
|
[33] |
THALL A. Extended-precision floating-point numbers for GPU computation[M]// ACM SIGGRAPH 2006 research posters. 2006: 52.
|