[1] |
WANG Z, DONG Y, MAO S, et al. Internet multimedia traffic classification from QoS perspective using semi-supervised dictionary learning models[J]. China Communications, 2017, 14(10): 202-218.
|
[2] |
KALWAR J H, BHATTI S. Deep Learning Approaches for Network Traffic Classification in the Internet of Things (IoT): A Survey[J/OL]. arXiv preprint arXiv:2402.00920, 2024. https://arxiv.org/abs/2402.00920.
|
[3] |
ABBASI M, SHAHRAKI A, TAHERKORDI A. Deep learning for network traffic monitoring and analysis (NTMA): A survey[J/OL]. Computer Communications, 2021, 170: 19-41. https://www.sciencedirect.com/science/article/pii/S0140366421000426.
|
[4] |
YAO H, LIU C, ZHANG P, et al. Identification of encrypted traffic through attention mechanism based long short term memory[J]. IEEE transactions on big data, 2019, 8(1): 241-252.
|
[5] |
WANG X, HAN Y, LEUNG V C M, et al. Edge AI: Convergence of edge computing and artificial intelligence[M]. Singapore: Springer, 2020.
|
[6] |
SIMONYAN K. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv preprint arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556.
|
[7] |
IANDOLA F N. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size[J/OL]. arXiv preprint arXiv:1602.07360, 2016. https://arxiv.org/abs/1602.07360.
|
[8] |
HOWARD A G. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. https://arxiv.org/abs/1602.07360. arXiv preprint arXiv:1704.04861, 2017.
|
[9] |
ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 6848-6856.
|
[10] |
SUN C, CHEN B, BU Y, et al. Lightweight traffic classification model based on deep learning[J]. Wireless Communications and Mobile Computing, 2022, 2022(1): 3539919.
|
[11] |
WANG T, XIE X, WANG W, et al. Netmamba: Efficient network traffic classification via pre-training unidirectional mamba[C]// 2024 IEEE 32nd International Conference on Network Protocols (ICNP), IEEE, 2024: 1-11.
|
[12] |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]// Proceedings of the European conference on computer vision (ECCV), 2018: 116-131.
|
[13] |
R GIL G D, LASHKARI A H, MAMUN M, et al. Characterization of encrypted and VPN traffic using time-related features[C]// Proceedings of the 2nd international conference on information systems security and privacy (ICISSP 2016), Setúbal, Portugal: SciTePress, 2016: 407-414.
|
[14] |
YU F. Multi-scale context aggregation by dilated convolutions[J/OL]. arXiv preprint arXiv:1511.07122, 2015. https://arxiv.org/abs/1511.07122.
|
[15] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.
|
[16] |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021: 13713-13722.
|
[17] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778.
|
[18] |
HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]// Proceedings of the IEEE/CVF international conference on computer vision, 2019: 1314-1324.
|
[19] |
TAN M, LE Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]// International conference on machine learning, PMLR, 2019: 6105-6114.
|