数据与计算发展前沿 ›› 2026, Vol. 8 ›› Issue (1): 129-147.

CSTR: 32002.14.jfdc.CN10-1649/TP.2026.01.011

doi: 10.11871/jfdc.issn.2096-742X.2026.01.011

• 技术与应用 • 上一篇    下一篇

基于笔迹的书写者性别与年龄检测研究综述

蔡毅1(),王晓宾1,*(),陈蕊丽1,韩珣2,3   

  1. 1.中国人民公安大学,侦查学院,北京 100038
    2.智能警务四川省重点实验室,四川 泸州 646000
    3.四川警察学院,道路交通管理系,四川 泸州 646000
  • 收稿日期:2025-03-07 出版日期:2026-02-20 发布日期:2026-02-02
  • 通讯作者: 王晓宾
  • 作者简介:蔡毅,中国人民公安大学,硕士研究生,研究方向为文件检验。
    本文主要承担工作为完成文献调研和论文撰写。
    CAI Yi, is a master’s student at the People’s Public Security University of China. His research direction is document examination.
    In this paper, he is responsible for literature review and paper writing.
    E-mail: 2023211393@stu.ppsuc.edu.cn|王晓宾,中国人民公安大学,副教授,博士,主要研究方向为文件检验。
    本文主要承担工作为论文内容修改。
    WANG Xiaobin, Ph.D., is an associate professor at the People’s Public Security University of China. His research direction is document examination.
    In this paper, he is mainly responsible for revising the manuscript.
    E-mail: xiaobin08d016@126.com
  • 基金资助:
    智能警务四川省重点实验室开放课题资助(ZNJW2023KFMS007);中国人民公安大学刑事科学技术双一流创新研究专项(2023SYL06)

Review of Research on Gender and Age Detection of Writers Based on Handwriting

CAI Yi1(),WANG Xiaobin1,*(),CHEN Ruili1,HAN Xun2,3   

  1. 1. School of Investigation, People’s Public Security University of China, Beijing 100038, China
    2. Intelligent Policing Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
    3. Department of Transportation Management, Sichuan Police College, Luzhou, Sichuan 646000, China
  • Received:2025-03-07 Online:2026-02-20 Published:2026-02-02
  • Contact: WANG Xiaobin

摘要:

【目的】本文旨在系统综述基于笔迹的书写者性别和年龄检测方面的研究现状及未来趋势。【方法】首先概述了主要数据集及应用场景,随后将笔迹识别模型分为传统机器学习和深度学习两类方法。对传统方法,分析了SVM、KNN、决策树等算法特点;对深度学习方法,细分为端到端神经网络和特征提取网络两种模式。通过比较不同算法在相同数据集上的性能,评估了各种方法的优劣。【结果】本文全面总结了基于笔迹书写者的性别与年龄检测技术的研究现状,并对现有模型和方法进行了深入分析。研究发现,深度学习模型在特征提取和分类精度方面具有显著优势;而传统机器学习方法在处理小规模数据集时仍有独特优势。当前研究面临缺乏中文公开数据集、模型可解释性不足及细粒度年龄分类精度低等挑战。未来研究应关注多语言数据集开发、创新视觉模型架构、深化注意力机制应用以及推进多模态特征融合,推动笔迹识别技术在高可靠性场景中的实际应用。

关键词: 笔迹识别, 性别检测, 年龄分类, 机器学习, 深度学习

Abstract:

[Objective] The purpose of this paper is to systematically review the current research status and future trends in handwriting-based gender and age detection of writers. [Methods] The review first outlines the main datasets and application scenarios, then categorizes handwriting recognition models into traditional machine learning and deep learning methods. For traditional methods, the characteristics of algorithms such as SVM, KNN, and decision trees are analyzed. For deep learning methods, the analysis is divided into end-to-end neural networks and feature extraction networks. The advantages and disadvantages of different methods are evaluated by comparing their performance on identical datasets. [Results] This paper comprehensively summarizes the research status of gender and age detection technology based on handwriting, and conducts an in-depth analysis of existing models and methods. Research shows that deep learning models have significant advantages in feature extraction and classification accuracy, while traditional machine learning methods maintain unique advantages when processing small-scale datasets. Current research faces challenges, including the lack of public Chinese datasets, insufficient model interpretability, and low accuracy in fine-grained age classification. Future research should focus on developing multilingual datasets, innovating visual model architectures, deepening attention mechanism applications, and advancing multimodal feature fusion, promoting the practical application of handwriting recognition technology in high-reliability scenarios.

Key words: handwriting recognition, gender detection, age classification, machine learning, deep learning