[1] |
RAJPURKAR P, LUNGREN M P. The Current and Future State of AI Interpretation of Medical Images[J]. New England Journal of Medicine, 2023, 388(21): 1981-1990.
|
[2] |
BRADY A. The vanishing radiologist—an unse-en danger, and a danger of being unseen[J]. Eu-ropean Radiology, 2021, 31(8): 5998-6000.
|
[3] |
HOLM P, VIGILD M, NITSCHKE I, et al. De-ntal care for aging populations in Denmark, Sw-eden, Norway, United Kingdom, and Germany[J]. Journal of Dental Education, 2005, 69(9): 987-997.
|
[4] |
GAO H, CHAE O. Individual tooth segmentatio-n from CT images using level set method with shape and intensity prior[J]. Pattern Recognition, 2010, 43(7): 2406-2417.
|
[5] |
GAN Y, XIA Z, XIONG J, et al. Toward accu-ratee tooth segmentation from computed tomography images using a hybrid level set model[J]. Medical Physics, 2015, 42(1): 14-27.
|
[6] |
KEYHANINEJAD S, ZOROOFI A, SETAREH-DAN K, et al. Automated segmentation of teeth in multi-slice CT images[C]. IET International Conference on Visual Information Engineering, St-evenage, Herts, UK. 2006: 339-344.
|
[7] |
LECUN Y, BENGIO Y, HINTON G. Deep lear-ning[J]. Nature, 2015, 521(7553): 436-444.
|
[8] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gr-adient-based learning applied to document recog-nition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[9] |
CHO K, MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translate-on[J]. arXiv Preprint arXiv:1406.1078, 2014.
|
[10] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical ima-ge segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Munich, DE. 2015: 234-241.
|
[11] |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S, et al. 3D U-Net: learning dense volumetric segm-entation from sparse annotation[C]// Medical Im-age Computing and Computer-Assisted Intervent-ion-MICCAI 2016. Athens, GR, 2016: 424-432.
|
[12] |
MILLETARI F, NAVAB N, AHMADI A. V-net: Fully convolutional neural networks for volumet-ric medical image segmentation[C]// 2016 Fourth International Conference on 3D Vision, San Francisco, CA, USA. 2016: 565-571.
|
[13] |
RAJPURKAR P, CHEN E, BANERJEE O, et al. AI in health and medicine[J]. Nature Medicine, 2022, 28(1): 31-38.
|
[14] |
SUN M, LI K, QI X, et al. Contextual informa-tion enhanced convolutional neural networks for retinal vessel segmentation in color fundus ima-ges[J]. Journal of Visual Communication and I-mage Representation, 2021, 77: 103134.
|
[15] |
HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, HI, USA, 2017: 4700-4708.
|
[16] |
SUN M, ZHOU W, QI X, et al. Prediction of BAP1 expression in uveal melanoma using dens-ely-connected deep classification networks[J]. Cancers, 2019, 11(10): 1579.
|
[17] |
TARVAINEN A, VALPOLA H. Mean teachers a-re better role models: Weight-averaged consiste-ncy tar-gets improve semi-supervised deep learn-ing results[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
[18] |
JIAO R, ZHANG Y, DING L, et al. Learning with limited annotations: a survey on deep semi-supervised learning for medical image segment-ation[J]. Computers in Biology and Medicine, 2024, 169: 107840.
|
[19] |
LI D, YANG J, KREIS K, et al. Semantic seg-mentation with generative models: Semi-supervis-ed learning and strong out-of-domain generalizat-ion[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8300-8311.
|
[20] |
XU D, WANG Z. Semi-supervised semantic seg-mentation using an improved generative adversa-rial network[J]. Journal of Intelligent & Fuzzy S-ystems, 2021, 40(5): 9709-9719.
|
[21] |
MITTAL S, TATARCHENKO M, BROX T. Se-mi-supervised semantic segmentation with high a-nd low-level consistency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(4): 1369-1379.
|
[22] |
YU L, WANG S, LI X, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D l-eft atrium segmentation[C]// Medical Image Co-mputing and Computer Assisted Intervention-MICCAI 2019, Shenzhen, 2019: 605-613.
|
[23] |
OUALI Y, HUDELOT C, TAMI M. Semi-super-vised semantic segmentation with cross-consiste-ncy training[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Re-cognition, Seattle, WA, USA, 2020: 12674-12684.
|
[24] |
WANG G, YE C, MAN B. Deep learning for t-omographic image reconstruction[J]. Nature Mac-hine Intelligence, 2020, 2(12): 737-748.
|
[25] |
CUI Z, FANG Y, MEI L, et al. A fully autom-atic AI system for tooth and alveolar bone seg-mentation from cone-beam CT images[J]. Nature Communications, 2022, 13(1): 2096.
|
[26] |
LI K, TAN M, XIAO D, et al. Research on ro-ad extraction from high-resolution remote sensin-g images based on improved UNet++[J]. IEEE Access, 2024, 12: 50300-50309.
|
[27] |
HAO J, ZHU Y, HE L, et al. T-Mamba: A uni-fied framework with Long-Range Dependency in dual-domain for 2D & 3D Tooth Segmentation[J]. arXiv preprint arXiv:2404.01065, 2024.
|
[28] |
CHEN S, ZHUO J, LI X, et al. CMT: Co-train-ing Mean-Teacher for Unsupervised Domain Ad-aptation on 3D Object Detection[C]// Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, VIC, AUS, 2024: 4738-4747.
|
[29] |
LI X, YU L, CHEN H, et al. Transformation c-onsistent self-ensembling model for semisupervis-ed medical image segmentation[J]. IEEE Transa-ctions on Neural Networks and Learning Systems, 2020, 32(2): 523-534.
|
[30] |
MENDEL R, RAUBER D, SOUZA L, et al. E-rror-correcting mean-teacher: Corrections instead of consistency-targets applied to semi-supervised medical image segmentation[J]. Computers in B-iology and Medicine, 2023, 154(C): 106585.
|