数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (6): 77-91.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.06.008

doi: 10.11871/jfdc.issn.2096-742X.2025.06.008

• 专刊:第40次全国计算机安全学术交流会征文 • 上一篇    下一篇

基于多特征融合的PE恶意代码检测与分类研究

令狐荣微1(),张瑜1,*(),石元泉2,杨玉军3   

  1. 1.广东技术师范大学,网络空间安全学院,广东 广州 510665
    2.湖南第一师范学院,计算机学院,湖南 长沙 410205
    3.怀化学院,计算机与人工智能学院,湖南 怀化 418000
  • 收稿日期:2025-08-04 出版日期:2025-12-20 发布日期:2025-12-17
  • 通讯作者: 张瑜
  • 作者简介:令狐荣微,广东技术师范大学,硕士研究生,主要研究方向为恶意代码检测与分类。
    本文承担工作为:模型设计,模型算法实现。
    LINGHU Rongwei is a master’s student at Guangdong Polytechnic Normal University. Her research interests include malware detection and classification.
    In this paper, she is responsible for the model design and algorithm implementation
    E-mail: Linghu@gpnu.edu.cn|张瑜,广东技术师范大学硕士生导师,主要研究方向为恶意代码、网络攻防、免疫计算、人工智能等。
    本文承担工作为:指导选题以及算法与模型优化。
    ZHANG Yu is a master’s supervisor at Guangdong Polytechnic Normal University. His research interests include malware, network attack and defense, immune computation, and artificial intelligence.
    In this work, he is responsible for supervising the selection of the research topic and the optimization of the algorithm and model.
    E-mail:bullzhangyu@gpnu.edu.cn
  • 基金资助:
    国家自然科学基金(61862022);国家自然科学基金(62172182);广东省自然科学基金(2023A1515011084);广东省高校重点科研项目(2022ZDZX1011);浙江省信息安全重点实验室项目(KF202306);广东技术师范大学博士点提升计划(22GPNUZDJS27)

Multi-Feature Fusion-Based Detection and Classification of Portable Executable Malware

LINGHU Rongwei1(),ZHANG Yu1,*(),SHI Yuanquan2,YANG Yujun3   

  1. 1. College of Cybersecurity, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, China
    2. School of Computer Science, Hunan First Normal University, Changsha, Hunan 410205, China
    3. School of Computer and Artificial Intelligence, Huaihua University, Huaihua, Hunan 418000, China
  • Received:2025-08-04 Online:2025-12-20 Published:2025-12-17
  • Contact: ZHANG Yu

摘要:

【目的】为了解决传统恶意代码的静态分析方法不仅依赖反汇编,而且特征提取十分耗时的问题。【方法】与现有依赖反汇编或动态分析的研究不同,本方法直接从二进制文件中提取熵、三阶马尔可夫矩阵与导入导出表特征,将三者融合构建三维张量。随后,采用双线性插值算法进行尺寸归一化,将生成统一尺寸的可视化图像输入卷积神经网络进行分类学习。【结果】显著降低了特征提取时间,同时保持了对复杂变种的鲁棒性,在BODMAS数据集上进行验证,该方法的分类准确率高达97.06%。【结论】证明了其有效性和鲁棒性。

关键词: 恶意代码, 可视化, 特征提取, 特征融合, 深度学习

Abstract:

[Objective] This paper is to address the limitations of traditional static malware analysis methods which heavily rely on disassembly technology and involve time-consuming feature extraction. [Methods] Unlike prior work that depends on disassembly or dynamic analysis, this method directly extracts entropy, third-order Markov matrices, and import/export-table features from the raw binaries, fusing the three into a unified three-dimensional tensor. Bilinear interpolation is then applied for size normalization, producing fixed-size visualized images that are fed into a convolutional neural network for classification. [Results] The proposed method significantly reduces feature-extraction time while preserving robustness against complex variants. Experiments conducted on the BODMAS dataset demonstrate that the proposed method achieves a high classification accuracy of 97.06%. [Conclusions] The results validate the effectiveness and robustness of the proposed method..

Key words: malicious code, visualization, feature extraction, feature fusion, deep learning