| [1] |
Kaspersky. 威胁数量上升: 2023年网络罪犯每天释放411,000个恶意文件[EB/OL]. (2023)[2023-07-14]. https://www.kaspersky.com.cn/about/press-relea-ses/rising-threats.
|
| [2] |
Federal Office for Information Security. The State of IT Security in Germany 2024[R/OL]. (2024-11-12)[2024-11-12]. https://www.bsi.bund.de/EN/Service-N- avi/Publikationen/Lagebericht/lagebericht_node.html.
|
| [3] |
NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware Images: Visualization and Automatic Classification[C]. Malicious code classification method based on deep residual network and hybrid attention mechanism for edge s, 2011: 1-7.
|
| [4] |
HAN J, ZHANG Y, WANG H. Malware Analysis Using Visualization Images and Entropy Graphs for Detecting and Distinguishing New Malware and Var-iants[J]. International Journal of Information Security, 2015, 10(4): 789-800.
|
| [5] |
FU Y, LI M, WANG X. Malware Visualization for Fine-Grained Classification[J]. IEEE Access, 2018, 6: 14510-14523.
|
| [6] |
SCHULTZ M G, ESKIN E, ZADOK F, et al. Data Mining Methods for Detection of New Malicious Executables[C]// Proceedings of the IEEE Symposium on Security and Privacy (S&P 2001), 2001: 38-49.
|
| [7] |
KOLTER J Z, MALOOF M A. Learning to detect and classify malicious executables in the wild[J]. Jouenal of Machine Learning Research, 2006, 7(12): 2721-2744.
|
| [8] |
COULL S E, GARDNER C. Activation analysis of a byte-based deep neural network for malware classification[C]. 2019 IEEE Security and Privacy Workshops (SPW). San Francisco, CA, 2019: 21-27.
|
| [9] |
SHAFIQ M Z, TABISH S M, MIRZA F, et al. PE-Miner: Mining structural information to detect malicious executables in realtime[C]. Recent Advances in Intrusion Detection. Intrusion Detect, 2009: 121-141.
|
| [10] |
LI B, ROUNDY K, GATES C, et al. Large-scale identification of malicious singleton files[C]. 7th ACM Conf Data and Application Security and Privacy (CODASPY), 2017: 227-238.
|
| [11] |
KUMAR A, KUPPUSAMY K S, AGHILA G. A learning model to detect maliciousness of portable executable using integrated feature set[J]. Journal of King Saud University-Computer and Information Sc-iences, 2019, 31(2): 252-265.
|
| [12] |
REZAEI T, HAMZEH A. An efficient approach for malware detection using PE header specifications[C]// 2020 6th International Conference on Web Research (ICWR). Tehran, Iran, 2020: 234-239.
|
| [13] |
赵晓君, 王小英, 张咏梅, 等. 基于恶意代码行为分析的入侵检测技术研究[J]. 计算机仿真, 2015, 32(4): 277-280.
|
| [14] |
GALAL H S, MAHDY Y B, ALLATIEA M. Behavior-based features model for malware detection[J]. Journal Of Computer Virology And Hacking Techniques, 2016, 12(2): 59-67.
|
| [15] |
KIM H, KIM J, KIM Y, et al. Improvement of malware detection and classification using API call sequence alignment and visualization[J]. Cluster Computing-the Journal Of Networks Software Tools And Applications, 2019, 22(1): 921-929.
|
| [16] |
AMER E, ZELINKA I. A dynamic Windows malware detection and prediction method based on contextual understanding of API call sequence[J]. Computers & Security, 2020, 92: 101760.
|
| [17] |
ANDERSON B, QUIST D, NEIL J, et al. Graph-based malware detection using dynamic analysis[J]. Journal of Computer Virology and Hacking Techniques., 2011, 7: 247-258.
|
| [18] |
BRIDGES R, JIMÉNEZ J H, NICHOLS J, et al. Towards malware detection via CPU power consumption: Data collection design and analytics[C]. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). New York: 2018: 1680-1684.
|
| [19] |
SAYADI H, PATEL N, SASAN A, et al. Ensemble learning for effective run-time hardware-based malware detection: A comprehensive analysis and classification[C]// Proceedings of the 55th Annual Design Automation Conference. San Francisco, CA: 2018: 1-6.
|
| [20] |
BURNAP P, FRENCH R, TURNER F, et al. Malware classification using self organising feature maps and machine activity data[J]. Computers & Security, 2018, 73: 399-410.
|
| [21] |
GHANEI H, MANAVI F, HAMZEH A. A novel method for malware detection based on hardware events using deep neural networks[J]. Journal of Computer Virology and Hacking Techniques, 2021, 17: 1-13.
|
| [22] |
CHEN J J, PENG B Z, WU P Z. Malicious code detection method based on dynamic behavior and machine learning[J]. Computer Engineering, 2021, 47(3): 166-173.
|
| [23] |
NI S, QIAN Q, ZHANG R. Malware identification using visualization and deep learning[J]. Journal of Computer Virology and Hacking Techniques, 2016, 12(3): 173-182.
|
| [24] |
WANG J W, CHEN Z J, XIE X, et al. Deep visualization classification method for malicious code based on Ngram-TFIDF[J]. Journal on Communications, 2024, 45(6).
|
| [25] |
XIAO X, ZHANG S, MERCALDO F, et al. Android malware detection based on system call sequences and LSTM[J]. Multimedia Tools and Applications, 2018, 78(4): 3979-3999.
|
| [26] |
WOJNOWICZ M, CHISHOLM G, WOLFF M, et al. Wavelet decomposition of software entropy reveals symptoms of malicious code[J]. Journal of Innovation in Digital Ecosystems, 2016, 3(2): 130-140.
|
| [27] |
LIU L, HE X, LIU L, et al. Capturing the symptoms of malicious code in electronic documents by files entropy signal combined with machine learning[J]. Applied Soft Computing, 2019, 82: 105598.
|
| [28] |
YANLI Y S, YANG L, WANG D, et al. Malicious code classification method based on deep residual network and hybrid attention mechanism for edge security[J]. Wireless Communications & Mobile Computing, 2022, 2022: 6243713.
|
| [29] |
QI X, LIU W, LOU R, et al. MC-ISA: A multi-channel code visualization method for malware detection[J]. Electronics, 2023, 12(9): 2272.
|
| [30] |
LI S, WANG J, SONG Y, et al. Tri-channel visualised malicious code classification based on impr-oved ResNet[J]. Applied Intelligence, 2024, 54: 12-453-12475.
|
| [31] |
任卓君, 陈光, 卢文科. 恶意软件的操作码可视化方法研究[J]. 计算机工程与应用, 2021, 57(18): 130-134.
|
| [32] |
JIANG L, ZHANG Y, SHI Y. Visual fileless malware classification via few-shot learning[C]// International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2023). SPIE, 2023, 12718: 113-124.
|
| [33] |
ZILIN Z, SHUMIAN Y, DAWEI Z. A new framework for visual classification of multi-channel malware based on transfer learning[J]. Applied Sciences, 2023, 13(4): 2484.
|
| [34] |
MAURO C, SHUBHAM K, P V. A few-shot malware classification approach for unknown family recognition using malware feature visualization[J]. Computers & Security, 2022, 122: 102889.
|
| [35] |
SULTANIK E. bin2png:A simple cross-platform script to encode binary files as PNG images[EB/OL]. GitHub. [2023-07-14]. https://github.com/ESultanik/bin2png.
|