[1] |
KUZNETSOV S N, SUVOROVA A V. An Empirical Model of the Magnetopause for Broad Ranges of Solar Wind Pressure and BZ, IMF[M]. Polar Cap Boundary Phenomena. SpringerNetherlands, 1998: 51-61.
|
[2] |
FERRARO V C A. On the theory of the first phase of a geomagnetic storm: A new illustrative calculation based on an idealised (plane not cylindrical) model field distribution[J]. Journal of Geophysical Research, 1952, 57(1): 15-49.
|
[3] |
SPREITER J R, BRIGGS B R. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth[J]. Journal of Geophysical Research, 1962, 67(1): 37-51.
|
[4] |
MEAD G D, BEARD D B. Shape of the Geomagnetic Field Solar Wind Boundary[J]. Journal of Geophysical Research, 1964, 69(7): 1169-1179.
|
[5] |
FAIRFIELD D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. Journal of Geophysical Research, 1971, 76(28): 6700-6716.
|
[6] |
HOLZER R E, SLAVIN J A. Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere[J]. Journal of Geophysical Research Space Physics, 2012, 83(A8): 3831-3839.
|
[7] |
FORMISANO V, DOMINGO V, WENZEL K P. The three-dimensional shape of the magnetopause[J]. Planetary & Space Science, 1979, 27(9): 1137-1149.
|
[8] |
AUBRY M P, RUSSELL C T, KIVELSON M G. Inward motion of the magnetopause before a substorm[J]. Journal of Geophysical Research, 1970, 75(34): 7018-7031.
|
[9] |
OGINO T, WALKER R J, ASHOUR-ABDALLA M. A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward[J]. IEEE Transactions on Plasma Science, 2002, 20(6): 817-828.
|
[10] |
TANAKA T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields[J]. Journal of Computational Physics, 1994, 111(2): 381-389.
|
[11] |
RAEDER J, WALKER R J, ASHOUR-ABDALLA M. The structure of the distant geomagnetic tail during long periods of northward IMF[J]. Geophysical Research Letters, 1995, 22(4): 349-352.
|
[12] |
JANHUNEN P. GUMICS-3 a global ionosphere-magnetosphere coupling simulation with high ionospheric resolution[C]// Environment Modeling for Space-Based Applications. 1996, 392: 233.
|
[13] |
POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. Journal of Computational Physics, 1999, 154(2): 284-309.
|
[14] |
LYON J G, FEDDER J A, MOBARRY C M. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(15-16): 1333-1350.
|
[15] |
PALMROTH M, PULKKINEN T I, JANHUNEN P, et al. Stormtime energy transfer in global MHD simulation[J]. Journal of Geophysical Research Space Physics, 2003, 108(A1).
|
[16] |
NĚMEČEK Z, ŠAFRÁNKOVÁ J, KOVAL A, et al. MHD analysis of propagation of an interplanetary shock across magnetospheric boundaries[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(1): 20-29.
|
[17] |
LIU Z Q, LU J Y, KABIN K, et al. Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations[J]. Journal of Geophysical Research Space Physics, 2012, 117(A7).
|
[18] |
WANG J Y, WANG C, HUANG Z H, et al. Effects of the interplanetary magnetic field on the twisting of the magnetotail: Global MHD results[J]. Journal of Geophysical Research Space Physics, 2014, 119(3): 1887-1897.
|
[19] |
陈为, 张嵩, 鲁爱东. 数据可视化的基本原理与方法[M]. 北京: 科学出版社, 2013.
|
[20] |
胡友秋, 郭孝城, 李国强, 等. Oscillation of Quasi-Steady Earth’s Magnetosphere[J]. 中国物理快报: 英文版, 2005(10): 2723-2726.
|
[21] |
HU Y Q, GUO X C, WANG C. On the ionospheric and reconnection potentials of the earth: Results from global MHD simulations[J]. Journal of Geophysical Research Space Physics, 2007, 112(A7).
|
[22] |
COLELLA P, WOODWARD P R. The Piecewise Parabolic Method (PPM) for gas-dynamical simulations[J]. Journal of Computational Physics, 1984, 54(1): 174-201.
|
[23] |
周芳芳, 樊晓平, 杨斌. 体绘制中传递函数设计的研究现状与展望[J]. 中国图象图形学报, 2008, 13(6): 1034-1047.
|
[24] |
郭翰琦, 袁晓如. 体数据可视化传递函数研究[J]. 计算机辅助设计与图形学学报, 2012, 24(10): 1249-1258.
|
[25] |
KNISS J, KINDLMANN G, HANSEN C. Multidimensional transfer functions for interactive volume rendering[J]. Visualization Handbook, 2005, 8(3): 189-209.
|
[26] |
LEVOY M. Display of Surfaces from Volume Data[J]. IEEE Computer Graphics & Applications, 1988, 8(3): 29-37.
|
[27] |
KINDLMANN G, Durkin J W. Semi-automatic generation of transfer functions for direct volume rendering[C]. IEEE Symposium Onvisualization. IEEE, 2002: 79-86.
|
[28] |
KINDLMANN G, WHITAKER R, Tasdizen T, et al. Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications[C]. Visualization, 2003. Vis. IEEE, 2003: 513-520.
|
[29] |
CABAN J J, RHEINGANS P. Texture-based Transfer Functions for Direct Volume Rendering[M]. IEEE Educational Activities Department, 2008.
|
[30] |
HUANG R, MA K L. RGVis: region growing based techniques for volume visualization[C]. Computer Graphics and Applications, 2003. Proceedings. Pacific Conference on. IEEE, 2003: 355-363.
|
[31] |
ROETTGER S, BAUER M, STAMMINGER M. Spatialized transfer functions[C]. Joint Eurographics / IEEE Vgtc Conference on Visualization. Eurographics Association, 2005: 271-278.
|
[32] |
CORREA C D, MA K L. Visibility Histograms and Visibility-Driven Transfer Functions[J]. IEEE Transactions on Visualization & Computer Graphics, 2010, 17(2): 192-204.
|
[33] |
ARTHUR D, VASSILVITSKII S. k-Means++: the advantages of careful seeding, in: SODA ’07[J]. Proceedings of the Eighteenth Annual ACM-SIAM Symposiumon Discrete algorithms, Society for Industrial and Applied Mathematics, 2007, 11(6): 1027-1035.
|
[34] |
唐泽圣. 三维数据场可视化[M]. 北京: 清华大学出版社,1999.
|